Opendata, web and dolomites

AntiViralEvo SIGNED

Unravelling the evolution of antiviral sensors and response systems in animals using the phylum Cnidaria

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 AntiViralEvo project word cloud

Explore the words cloud of the AntiViralEvo project. It provides you a very rough idea of what is the project "AntiViralEvo" about.

active    model    organisms    outgroup    outstanding    representative    replication    million    antiviral    survival    interferons    depends    interference    recruits    mechanism    question    original    gene    anemone    absolute    pivotal    nematostella    dichotomy    fitness    parasites    sea    cnidaria    600    viral    mostly    vectensis    lack    until    sampling    nematodes    questions    evolutionary    eliminate    preliminary    battling    tangled    excellent    insights    deduce    race    approximately    cells    immunity    hosts    rest    decipher    biochemical    reduce    evolution    attain    phyletic    impossible    infections    tools    position    insects    recognition    last    action    infection    answer    harness    lab    heavily    rnai    phylum    life    tractable    viruses    regarding    components    interferon    molecular    infected    arms    incoming    diverged    immune    mode    neighbouring    limited    species    invertebrates    battle    virus    manipulation    triggered    ancestral    put    cnidarian    textbook    host    organism    ago    cleaves    animals    alert    ancestor    vertebrates    beginning    rna   

Project "AntiViralEvo" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙998˙750 €
 EC max contribution 1˙998˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2019-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-05-01   to  2025-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 1˙998˙750.00

Map

 Project objective

Viruses are absolute parasites as their replication depends on biochemical systems of their host. Because viral infections reduce the fitness of the host organism, hosts and viruses have been tangled in an evolutionary arms race for survival from the very beginning of life. As the immune system allows organisms to identify and eliminate viral infections, it is of pivotal importance for host fitness. In vertebrates, the antiviral immunity is heavily based on the interferon pathway that enables infected cells to alert neighbouring cells against incoming infection and recruits cells of the immune system to battle the virus. However, in the case of invertebrates, which lack interferons, the antiviral immunity is believed to be based mostly on an RNA interference (RNAi) that cleaves viral RNA. Until now, the recognition mechanism and mode of action of such systems were studied mostly in vertebrates, insects and nematodes. From this limited phyletic sampling, it is impossible to deduce what was the original mode of action of these systems in their last common ancestor and how antiviral immunity was triggered in early animals. To attain novel insights into the early evolution of this crucial system, I propose to study it in an outgroup: the sea anemone Nematostella vectensis, a representative model species of Cnidaria, a phylum that diverged approximately 600 million years ago from the rest of animals. Beyond its key phyletic position, Nematostella is a tractable lab model with available advanced molecular and gene manipulation tools making it an excellent comparative model. I will harness these tools to decipher the cnidarian system for battling RNA viruses and answer the outstanding questions regarding the evolution of antiviral immunity and its ancestral state in animals. My preliminary results put in question the textbook dichotomy between the antiviral immune systems of vertebrates and invertebrates as I find active components of both systems in Nematostella.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ANTIVIRALEVO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ANTIVIRALEVO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More  

Cu4Peroxide (2020)

The electrochemical synthesis of hydrogen peroxide

Read More