Opendata, web and dolomites

METABONE SIGNED

A new approach of metastatic bone fracture prediction using a patient-specific model including metastatic tissue, daily-life activities and local failure criteria

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 METABONE project word cloud

Explore the words cloud of the METABONE project. It provides you a very rough idea of what is the project "METABONE" about.

diseased    limitations    significantly    specificity    tissue    experimental    evaluation    material    medullar    limited    clinical    single    survival    scores    life    bone    clinically    completion    efforts    surgery    first    metastatic    made    mechanical    methodology    fragility    lesions    patients    femoral    combining    predict    simulations    ex    global    vivo    daily    metabone    responsible    hypothesised    model    lack    patient    metastases    huge    criteria    healthy    femur    optimize    proximal    compression    computed    risk    successful    composition    accuracy    local    human    stance    segments    tool    influential    qualitative    fracture    decision    economic    clinicians    located    socio    locomotor    numerical    mobility    alter    prevent    scans    prediction    performed    strategy    tomography    sensitivity    quantitative    models    loading    finite    osteolytic    tumoral    accurate    qct    strength    determined    guide    restricted    hampered    estimate    oncology    severely    quality    experimentally   

Project "METABONE" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE LYON 1 CLAUDE BERNARD 

Organization address
address: BOULEVARD DU 11 NOVEMBRE 1918 NUM43
city: VILLEURBANNE CEDEX
postcode: 69622
website: www.univ-Iyon1.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE LYON 1 CLAUDE BERNARD FR (VILLEURBANNE CEDEX) coordinator 184˙707.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

Osteolytic bone metastases are responsible for long bone fracture leading to restricted mobility, surgery, or medullar compression that severely alter quality of life and have a huge socio-economic impact. Current fragility scores to estimate the fracture risk in patients with metastatic femur are based on qualitative evaluation from Quantitative Computed Tomography (QCT) scans and lack sensitivity and specificity. Efforts are now made towards the development of patient-specific finite element models to assess the strength of tumoral bone segments, but their accuracy is hampered by several limitations, including limited knowledge of metastatic bone mechanical properties, simulations performed only for single stance loading condition, and simulations providing a global failure criteria. The aim of METABONE is, therefore, to use a novel approach to better predict the fracture risk of metastatic femur. A patient-specific finite element model will be developed based on QCT scans, which will include the real material properties of ex vivo human metastatic bone determined experimentally in the first part of the project. The composition and mechanical behaviour of diseased bone tissue are hypothesised to be rather different from healthy tissue and influential of femoral strength. This model will be used clinically on patients with osteolytic lesions located in proximal femur to assess the fracture risk during daily life activities, using a local failure criteria and a range of different loading conditions. This novel methodology, combining experimental and numerical approaches, is expected to significantly improve the accuracy of fracture risk prediction. Successful completion of METABONE will have the potential to guide clinical decision making, by providing clinicians with a more accurate tool to optimize locomotor strategy and oncology program, in order to prevent bone fracture, improve survival and quality of life of the patients.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "METABONE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "METABONE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

NarrowbandSSL (2019)

Development of Narrow Band Blue and Red Emitting Macromolecules for Solution-Processed Solid State Lighting Devices

Read More  

BIOplasma (2019)

Use flexible Tube Micro Plasma (FµTP) for Lipidomics

Read More