Opendata, web and dolomites

EROSIVE SIGNED

The influence of Earth-surface processes on solid-Earth, ice-sheet, and sea-level interactions for Scandinavian Ice-Sheet collapse

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "EROSIVE" data sheet

The following table provides information about the project.

Coordinator
AARHUS UNIVERSITET 

Organization address
address: NORDRE RINGGADE 1
city: AARHUS C
postcode: 8000
website: www.au.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 212˙194 €
 EC max contribution 212˙194 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2020-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AARHUS UNIVERSITET DK (AARHUS C) coordinator 212˙194.00

Map

 Project objective

One of the grand challenges for society in the future will be to cope with the consequences of a changing climate and resulting changes in global sea level. Yet, predictions of past and future scenarios are associated with significant uncertainties, as we do not currently understand all processes that influence ice-sheet variability and thereby global ice volume. One key shortcoming relates to Earth-surface processes. Fjord formation by selective glacial erosion has the potential to elevate surrounding regions significantly by erosional unloading (~1 km in Greenland). However, the consequences for ice-sheet dynamics and global sea level have never been explored. My approach is to combine state-of-the-art numerical modelling efforts from the two disciplines of sea-level research and glacial geomorphology with empirical data analysis, in order to investigate the influence of such processes on the solid Earth, ice sheets, and sea level. I will apply this novel modelling scheme to study the former Scandinavian Ice Sheet (SIS), where remarkable empirical constraints exist on glacial isostatic rebound, past ice sheet extent, and deposited sediment volumes. By investigating a former ice sheet, I will improve our understanding of processes that are highly relevant for the future evolution of existing ice sheets. This will improve the scientific basis for decision makers to shape well-founded policies for optimal adaptation to future sea-level changes. While acquiring new expertise in glacial geology and sedimentology, I will i) constrain solid-Earth deformation and global sea-level changes due to Quaternary erosion and deposition in the Scandinavian region, ii) assess the influence of long-term glacial erosion for SIS dynamics, ice volume, and sea-level contributions, and iii) gain significant insight into important interactions between surface processes, solid-Earth deformation, ice-sheet variability and sea-level change, and improve our understanding of SIS collapse.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EROSIVE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EROSIVE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More  

InvADeRS (2019)

Investigating the Activity of transposon Derived Regulatory Sequences in the placenta

Read More  

FrogsInSpace (2019)

From ecology to neurobiology: spatial cognition in rainforest frogs

Read More