Opendata, web and dolomites

BeamSense SIGNED

Making more with less: intelligent wavefront design to enable high resolution images of unstable samples.

Total Cost €


EC-Contrib. €






 BeamSense project word cloud

Explore the words cloud of the BeamSense project. It provides you a very rough idea of what is the project "BeamSense" about.

rearrangement    inability    ago    momentum    localised    probe    severe    microscope    image    reducing    reshape    instead    planar    illuminating    stems    detectors    disciplines    creates    weak    diffraction    intelligent    front    resolution    first    collected    heating    images    received    wave    forming    limits    bound    significantly    ultimately    optical    photovoltaics    materials    visualise    profound    microscopes    generate    portions    tails    scientific    intensities    unchanged    formed    sensitive    respective    electron    impediment    movement    broad    signal    limited    battery    quality    dose    intensity    noise    contrast    previously    form    compounds    overcoming    electrons    progress    roadblock    beam    damage    longer    mechanics    raster    pharmaceuticals    transmission    reduce    imaging    apertures    scattered    recorded    requiring    atomic    acquisition    pixel    scanning    easily    position    circular    angular    largely    stem    scanned    aperture    specimen    demonstration    shaping    structure    good   

Project "BeamSense" data sheet

The following table provides information about the project.


Organization address
city: LEEDS
postcode: LS2 9JT

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-10-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00


 Project objective

The resolution of images formed using scanning transmission electron microscopes (STEMs) is no longer limited by optical limits of the microscope, but instead by sample damage during acquisition. The image is formed by a highly focused beam of electrons being scanned across the specimen, with diffraction intensities recorded at each probe position. However, the beam can also cause localised heating and rearrangement of the atomic structure – and it is this movement that ultimately limits the image quality. Electron-beam-induced specimen damage is particularly severe for weakly-bound compounds, such as battery materials, photovoltaics or pharmaceuticals. The inability to visualise the atomic structure of these materials easily is a severe impediment to research progress in their respective fields. Overcoming the beam-damage roadblock would have a profound impact across many scientific disciplines. This can be achieved by significantly reducing the number of electrons required to form an image. The mechanics of image formation in STEMs is largely unchanged since their first demonstration 80 years ago: the probe is formed by illuminating a circular aperture with a planar electron wave, brought to a focus on the sample and raster scanned. Portions of the scattered intensity are collected to determine the intensity of the pixel associated with each probe position. Electron detectors have developed significantly in recent years - while the probe-forming apertures have received less attention. A circular aperture creates a probe with broad tails, and an image with only weak contrast, thus requiring many electrons to achieve good signal-to-noise. I have previously developed methods to reshape the electron beam to generate angular momentum. In this work, I will apply related methods to increase the image contrast by intelligent shaping of the wave front. This will reduce the required electron dose, and thus enable atomic resolution STEM imaging of beam sensitive materials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BEAMSENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BEAMSENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GenEl (2020)

General readout electronics for cross-sectoral application in European research infrastructure

Read More  

COLEX (2019)

Coopetition and Legislation in the Spanish Netherlands (1598-1665)

Read More  

NeuroSens (2019)

Neuromodulation of Sensory Processing

Read More