Opendata, web and dolomites

BeamSense SIGNED

Making more with less: intelligent wavefront design to enable high resolution images of unstable samples.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BeamSense project word cloud

Explore the words cloud of the BeamSense project. It provides you a very rough idea of what is the project "BeamSense" about.

raster    signal    demonstration    specimen    transmission    roadblock    tails    materials    microscope    beam    shaping    previously    intelligent    form    planar    inability    collected    limits    reducing    position    imaging    atomic    visualise    formed    intensity    acquisition    good    damage    easily    progress    disciplines    first    unchanged    apertures    broad    contrast    illuminating    respective    severe    circular    ago    front    detectors    bound    battery    limited    overcoming    electron    reshape    optical    photovoltaics    pharmaceuticals    intensities    reduce    instead    longer    compounds    mechanics    momentum    aperture    wave    stems    heating    structure    image    pixel    portions    scattered    received    requiring    rearrangement    diffraction    sensitive    weak    microscopes    scanning    recorded    movement    resolution    electrons    scientific    quality    images    noise    angular    profound    largely    ultimately    localised    probe    significantly    creates    impediment    scanned    stem    generate    dose    forming   

Project "BeamSense" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LEEDS 

Organization address
address: WOODHOUSE LANE
city: LEEDS
postcode: LS2 9JT
website: www.leeds.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2020
 Duration (year-month-day) from 2020-11-01   to  2022-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LEEDS UK (LEEDS) coordinator 224˙933.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The resolution of images formed using scanning transmission electron microscopes (STEMs) is no longer limited by optical limits of the microscope, but instead by sample damage during acquisition. The image is formed by a highly focused beam of electrons being scanned across the specimen, with diffraction intensities recorded at each probe position. However, the beam can also cause localised heating and rearrangement of the atomic structure – and it is this movement that ultimately limits the image quality. Electron-beam-induced specimen damage is particularly severe for weakly-bound compounds, such as battery materials, photovoltaics or pharmaceuticals. The inability to visualise the atomic structure of these materials easily is a severe impediment to research progress in their respective fields. Overcoming the beam-damage roadblock would have a profound impact across many scientific disciplines. This can be achieved by significantly reducing the number of electrons required to form an image. The mechanics of image formation in STEMs is largely unchanged since their first demonstration 80 years ago: the probe is formed by illuminating a circular aperture with a planar electron wave, brought to a focus on the sample and raster scanned. Portions of the scattered intensity are collected to determine the intensity of the pixel associated with each probe position. Electron detectors have developed significantly in recent years - while the probe-forming apertures have received less attention. A circular aperture creates a probe with broad tails, and an image with only weak contrast, thus requiring many electrons to achieve good signal-to-noise. I have previously developed methods to reshape the electron beam to generate angular momentum. In this work, I will apply related methods to increase the image contrast by intelligent shaping of the wave front. This will reduce the required electron dose, and thus enable atomic resolution STEM imaging of beam sensitive materials.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BEAMSENSE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BEAMSENSE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVOMET (2019)

The rise and fall of metastatic clones under immune attack

Read More  

SpaTime_AnTB (2020)

Single-cell spatiotemporal analysis of Mycobacterium tuberculosis responses to antibiotics within host microenvironments

Read More  

GrowthDevStability (2020)

Characterization of the developmental mechanisms ensuring a robust symmetrical growth in the bilateral model organism Drosophila melanogaster

Read More