Opendata, web and dolomites


Perfluorinated Organic Compounds (PFCs) Degradation using Non-Thermal Plasma Enhanced by Boron Doped Graphene Oxide as Catalyst

Total Cost €


EC-Contrib. €






 PFCsByPlasCat project word cloud

Explore the words cloud of the PFCsByPlasCat project. It provides you a very rough idea of what is the project "PFCsByPlasCat" about.

groundwater    perfluorooctanesulfonate    species    catalyst    search    data    time    pfos    ozone    emulsifiers    pfoa    extensive    standard    scaling    perfluorooctanoic    technologies    air    surge    yielding    responsible    drawn    catalysts    uv    contamination    samples    biological    wildlife    parallel    basic    optimized    drinking    fenton    disseminated    hybrid    guidelines    surfactants    thermal    synergy    contaminated    efficiency    stability    reactive    tested    applicability    degradation    cat    reactor    treatment    commercial    auspicable    perfluorinated    acid    photocatalysts    transfer    solutions    plasmas    synthesized    oxidation    chemical    oxide    maximize    boron    ntp    combination    pfcs    researcher    stakeholders    irradiation    monitoring    verify    compounds    doped    plasma    beneficiary    environment    prepared    excellence    limited    plas    will    industrial    innovative    implementing    resistant    ubiquitous    view    laboratory    toxicity    graphene    supplies    nano    reactors    aops    water    efficient    matrices    humans    campaigns   

Project "PFCsByPlasCat" data sheet

The following table provides information about the project.


Organization address
address: VIA 8 FEBBRAIO 2
city: PADOVA
postcode: 35122

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 183˙473 €
 EC max contribution 183˙473 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI PADOVA IT (PADOVA) coordinator 183˙473.00


 Project objective

The extensive use of perfluorinated compounds (PFCs) in many industrial/commercial applications, as surfactants, emulsifiers, etc., and their high chemical stability are responsible for their ubiquitous presence in the environment. Specifically, the contamination of groundwater and drinking water supplies by perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) is raising great concern as more data on PFCs toxicity in humans and wildlife is becoming available. Thus, a parallel surge in monitoring campaigns and in the search for innovative water treatment technologies for PFCs is required. Since PFCs are highly resistant to degradation by standard chemical and biological processes, advanced oxidation processes (AOPs) are being considered and, including Fenton, ozone and UV irradiation with catalysts, applied so far with limited success. Among innovative AOPs, air non-thermal plasmas (NTP), which produce several reactive species at a time, have been recently tested for the treatment of PFOA/PFOS yielding promising results. The proposed research aims to advance the state of art by developing an innovative treatment process for PFCs in which NTP is applied in combination with novel boron-doped graphene oxide (B-GO) nano photocatalysts. The catalysts synthesized and characterized by the Researcher will be tested on prepared solutions of PFOA and PFOS using various NTP reactors which are available in the beneficiary laboratory. The best catalyst-reactor combination will thus be identified; conditions and parameters will be optimized to maximize the synergy between plasma and catalyst and the efficiency of the novel hybrid plas-cat process. Real samples of contaminated groundwater will be tested to verify the process applicability to complex matrices. For excellence of research, basic guidelines will be drawn and disseminated for implementing an efficient hybrid plas-cat process in view of auspicable scaling-up and technology transfer to stakeholders.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PFCSBYPLASCAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PFCSBYPLASCAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

FrogsInSpace (2019)

From ecology to neurobiology: spatial cognition in rainforest frogs

Read More  

POMOC (2019)

Charles IV and the power of marvellous objects

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  
lastchecktime (2022-05-23 16:45:31) correctly updated