Opendata, web and dolomites

MaP SIGNED

Material properties in the strong light-matter coupling regime

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MaP project word cloud

Explore the words cloud of the MaP project. It provides you a very rough idea of what is the project "MaP" about.

modes    vacuum    ultrastrong    usually    thermodynamic    cavities    give    chemical    physical    organic    metal    measuring    gases    polaritonic    phys    weak    material    entirely    mostly    successfully    interact    zero    mechanism    ing    fluctuations    platform    engineering    emission    inside    point    coupling    dressing    platforms    mobility    suggest    spontaneous    excitations    temperature    explore    15    group    materials    an    expand    room    made    assisted    host    chemistry    mater    cavity    transport    gives    186    extensively    attempt    observe    2019    alone    physics    gaas    electromagnetic    mixed    plasmonic    mode    conductivity    2015    optical    14    dressed    rely    paravicini    photonic    energy    orgiu    tools    semiconductors    alter    intend    hides    regime    dichalcogenides    charge    reaction    1123    disordered    al    few    rates    fact    electron    et    regimes    allowed    light    electronic    altered    shed    polaritons    responsible    experimental    transition    nat   

Project "MaP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE STRASBOURG 

Organization address
address: RUE BLAISE PASCAL 4
city: STRASBOURG
postcode: 67081
website: http://www.unistra.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-04-01   to  2023-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE STRASBOURG FR (STRASBOURG) coordinator 184˙707.00

Map

 Project objective

An electromagnetic mode without photonic excitations still has a non-zero energy - called zero-point energy. The resulting vacuum fluctuations give rise to long known physical effects such as the spontaneous emission. By engineering electromagnetic modes in cavities, vacuum can be made to interact with matter in the extensively studied weak, strong and ultrastrong light-matter coupling regimes. The term `light-matter coupling', as well as the optical experimental means by which the regime is usually studied, hides this important fact: vacuum alone gives rise to the coupling and to the mixed light-matter excitations (polaritons) of the system. In physics, still only few experimental platforms have allowed to observe `vacuum-matter coupling' without photonic excitations. Properties of materials dressed by a cavity were successfully observed by measuring their conductivity [Orgiu et al. Nat. Mater. 14, 1123 (2015); Paravicini-B. et al. Nat. Phys. 15, 186 (2019)]. In recent years, the new field of polaritonic chemistry has identified other material properties altered by vacuum coupling, including chemical reaction rates and thermodynamic properties. In this project, we intend to expand the new experimental access to the matter part via conductivity measurements to an entirely new system. So far, only highly disordered organic semiconductors [Orgiu] and very high mobility GaAs based electron gases were used [Paravicini-B.]. Here, we suggest a new platform using transition metal dichalcogenides inside a plasmonic cavity. This should work at room temperature and shed more light on the mechanism responsible for vacuum field assisted charge transport. In a second project, we attempt to alter phase transition properties by dressing a chemical to a cavity. Both projects aim to explore the potential of engineering properties of materials with a cavities vacuum field mode. They both mostly rely on optical, electronic and chemical experimental tools available in the host group.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

LieLowerBounds (2019)

Lower bounds for partial differential operators on compact Lie groups

Read More  

ROMANCE (2020)

StRategies fOr iMproving Agronomic practices based oN miCrobiomEs.

Read More