Opendata, web and dolomites

MaP SIGNED

Material properties in the strong light-matter coupling regime

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MaP project word cloud

Explore the words cloud of the MaP project. It provides you a very rough idea of what is the project "MaP" about.

phys    host    made    rates    polaritons    chemistry    intend    et    altered    disordered    electromagnetic    inside    interact    gases    paravicini    successfully    platform    2019    modes    thermodynamic    few    spontaneous    expand    an    organic    photonic    light    tools    allowed    dichalcogenides    suggest    group    15    energy    alone    explore    14    regimes    excitations    cavity    cavities    plasmonic    room    usually    physics    chemical    gives    mostly    fact    physical    regime    mixed    materials    orgiu    responsible    conductivity    1123    nat    dressing    observe    gaas    ultrastrong    emission    alter    dressed    measuring    mobility    2015    fluctuations    engineering    weak    point    semiconductors    hides    attempt    experimental    al    charge    platforms    entirely    material    electronic    transition    metal    mater    ing    give    mechanism    reaction    shed    electron    transport    temperature    coupling    extensively    assisted    optical    rely    polaritonic    zero    mode    186    vacuum   

Project "MaP" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITE DE STRASBOURG 

Organization address
address: RUE BLAISE PASCAL 4
city: STRASBOURG
postcode: 67081
website: http://www.unistra.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 184˙707 €
 EC max contribution 184˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2019
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2021
 Duration (year-month-day) from 2021-04-01   to  2023-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE STRASBOURG FR (STRASBOURG) coordinator 184˙707.00

Map

 Project objective

An electromagnetic mode without photonic excitations still has a non-zero energy - called zero-point energy. The resulting vacuum fluctuations give rise to long known physical effects such as the spontaneous emission. By engineering electromagnetic modes in cavities, vacuum can be made to interact with matter in the extensively studied weak, strong and ultrastrong light-matter coupling regimes. The term `light-matter coupling', as well as the optical experimental means by which the regime is usually studied, hides this important fact: vacuum alone gives rise to the coupling and to the mixed light-matter excitations (polaritons) of the system. In physics, still only few experimental platforms have allowed to observe `vacuum-matter coupling' without photonic excitations. Properties of materials dressed by a cavity were successfully observed by measuring their conductivity [Orgiu et al. Nat. Mater. 14, 1123 (2015); Paravicini-B. et al. Nat. Phys. 15, 186 (2019)]. In recent years, the new field of polaritonic chemistry has identified other material properties altered by vacuum coupling, including chemical reaction rates and thermodynamic properties. In this project, we intend to expand the new experimental access to the matter part via conductivity measurements to an entirely new system. So far, only highly disordered organic semiconductors [Orgiu] and very high mobility GaAs based electron gases were used [Paravicini-B.]. Here, we suggest a new platform using transition metal dichalcogenides inside a plasmonic cavity. This should work at room temperature and shed more light on the mechanism responsible for vacuum field assisted charge transport. In a second project, we attempt to alter phase transition properties by dressing a chemical to a cavity. Both projects aim to explore the potential of engineering properties of materials with a cavities vacuum field mode. They both mostly rely on optical, electronic and chemical experimental tools available in the host group.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MAP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MAP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More