AMUSE

Identification of new molecular and genetic basis of ammonium use efficiency in plants

 Coordinatore UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA 

 Organization address address: BARRIO SARRIENA S N
city: LEIOA
postcode: 48940

contact info
Titolo: Ms.
Nome: Charo
Cognome: Sánchez
Email: send email
Telefono: 34946012142
Fax: 34946013550

 Nazionalità Coordinatore Spain [ES]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2012-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2013
 Periodo (anno-mese-giorno) 2013-03-01   -   2017-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSIDAD DEL PAIS VASCO/ EUSKAL HERRIKO UNIBERTSITATEA

 Organization address address: BARRIO SARRIENA S N
city: LEIOA
postcode: 48940

contact info
Titolo: Ms.
Nome: Charo
Cognome: Sánchez
Email: send email
Telefono: 34946012142
Fax: 34946013550

ES (LEIOA) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

agriculture       no    ammonium    nutrition    pollution    nitrate    nitrogen    efficiency    environmental    nh    genetic    plants    minus    sustainable    arabidopsis   

 Obiettivo del progetto (Objective)

'Sustainable agriculture means to maintain equilibrium between obtaining a product at the best possible yield and with the best possible quality at the same time that the minimum environmental impact is provoked. Among the major challenges that the European Commission Horizon 2020 describes to be faced by researchers in the near future for building a better society, resources efficiency and sustainable agriculture are two of them. Nitrate (NO3−) and ammonium (NH4) are the main forms of nitrogen (N) available for plants. There is serious concern regarding NO3− loss in the field, giving rise to soil and water pollution and to global warming through emissions of nitrous oxide. In this framework, the use of ammonium-based fertilizers is a great opportunity to reduce environmental pollution effects of nitrate-based manures. The potential of NH4 as N source for agriculture has been reconsidered alongside the search to improve N use efficiency by the Intergovernmental Panel on Climate Change (IPCC). However, plants have traditionally been bred under nitric or combined nitrogen nutrition provoking a negative selection pressure towards NH4 assimilation. Indeed, NH4 is toxic to animals, plants, and fungi when present in excess amounts. In this project, a multidisciplinary approach will be engaged to identify new molecular and genetic basis of ammonium use efficiency in plants. With this aim, 384 natural accessions of Arabidopsis will be phenotyped and a Genome Wide Association analysis will be launched to identify genetic determinants of ammonium use efficiency in Arabidopsis. In parallel, Arabidopsis genetic reprogramming during ammonium nutrition will be assayed by RNAseq. The more interesting candidate genes will be functionally validated. Importantly, the knowledge and results generated with Arabidopsis as model plant will be transferred to economically important crops (wheat and tomato).'

Altri progetti dello stesso programma (FP7-PEOPLE)

RSWW (2010)

"Researching the past: Scotland and the Wider World, 1400-1800"

Read More  

MENCOFINAS (2011)

Magnetic Energy Conversion in Fine Nanoparticle Systems

Read More  

PRIMO (2013)

Power and Region in a Multipolar Order

Read More