Opendata, web and dolomites

FACT SIGNED

Factorizing the wave function of large quantum systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FACT project word cloud

Explore the words cloud of the FACT project. It provides you a very rough idea of what is the project "FACT" about.

power    deal    satisfying    first    exact    quantized    molecular    motion    scenarios    full    requiring    complexity    strategy    tackle    natural    theory    molecules    schr    electronic    deals    ouml    variety    quantum    amplitude    diagrams    regular    carlo    systematic    metallic    sophisticated    instead    technique    decomposing    subsystem    ultimately    functional    smaller    describe    infinite    necessarily    enormous    hamiltonian    electromagnetic    monte    versatility    hermitian    perform    forth    networks    subsystems    conditional    correlations    solids    combining    function    mean    phonon    photons    electrons    approximation    ingredient    leads    coupled    purely    density    bath    local    nuclear    wave    configuration    feynman    adiabatic    attached    add    movements    tensor    dynamical    equation    complicated    scenario    reduce    puts    techniques    probability    dinger    asymmetric    cluster    nuclei    standard    lies    semi    factorization    interaction    particle    isomerization    linear   

Project "FACT" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 2˙443˙932 €
 EC max contribution 2˙443˙932 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-09-01   to  2024-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 2˙443˙932.00

Map

 Project objective

This proposal puts forth a novel strategy to tackle large quantum systems. A variety of highly sophisticated methods such as quantum Monte Carlo, configuration interaction, coupled cluster, tensor networks, Feynman diagrams, dynamical mean-field theory, density functional theory, and semi-classical techniques have been developed to deal with the enormous complexity of the many-particle Schrödinger equation. The goal of our proposal is not to add another method to these standard techniques but, instead, we develop a systematic way of combining them. The essential ingredient is a novel way of decomposing the wave function without approximation into factors that describe subsystems of the full quantum system. This so-called exact factorization is asymmetric. In the case of two subsystems, one factor is a wave function satisfying a regular Schrödinger equation, while the other factor is a conditional probability amplitude satisfying a more complicated Schrödinger-like equation with a non-local, non-linear and non-Hermitian “Hamiltonian”. Since each subsystem is necessarily smaller than the full system, the above standard techniques can be applied more efficiently and, most importantly, different standard techniques can be applied to different subsystems. The power of the exact factorization lies in its versatility. Here we apply the technique to five different scenarios: The first two deal with non-adiabatic effects in (i) molecules and (ii) solids. Here the natural subsystems are electrons and nuclei. The third scenario deals with nuclear motion in (iii) molecules attached to semi-infinite metallic leads, requiring three subsystems: the electrons, the nuclei in the leads which ultimately reduce to a phonon bath, and the molecular nuclei which may perform large-amplitude movements, such as current-induced isomerization, (iv) purely electronic correlations, and (v) the interaction of matter with the quantized electromagnetic field, i.e., electrons, nuclei and photons.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FACT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FACT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

NEUROPRECISE (2019)

Precision medicine in traumatic brain injury using individual neurosteroid response

Read More  

NanoMechShape (2019)

Molecular control of actin network architecture and mechanics during cell shape changes

Read More