MM-PGT

Modern Methods for Perturbative Gauge Theories

 Coordinatore COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 961˙080 €
 EC contributo 961˙080 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2008-AdG
 Funding Scheme ERC-AG
 Anno di inizio 2009
 Periodo (anno-mese-giorno) 2009-01-01   -   2014-12-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Dr.
Nome: David A.
Cognome: Kosower
Email: send email
Telefono: +33 1 6908 8127
Fax: +33 1 6908 8120

FR (PARIS 15) hostInstitution 961˙080.00
2    COMMISSARIAT A L ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES

 Organization address address: RUE LEBLANC 25
city: PARIS 15
postcode: 75015

contact info
Titolo: Mr.
Nome: Jean-Christophe
Cognome: Coste
Email: send email
Telefono: +33 1 69089097
Fax: +33 1 69082199

FR (PARIS 15) hostInstitution 961˙080.00

Mappa

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

precision    perturbative    supersymmetric       numerical    calculations    computations    parton    physics    shower    theory    string    amplitudes    loop    standard    quantum    theories    related    gauge    data    theoretical    model    chromodynamics    qcd    crucial   

 Obiettivo del progetto (Objective)

'Gauge theories are the basis of modern theories of high-energy physics. Perturbative calculations are crucial to developing our quantitative understanding of these theories, as well as seeking new and deeper structures in these theories. Precision higher-order calculations in the SU(3) component of the Standard Model, perturbative Quantum Chromodynamics (QCD), will be crucial to understanding data at the CERN-based Large Hadron Collider (LHC) and finding and measuring physics beyond the standard model. Precision calculations in the electroweak theory will also play a role in confronting later precision data with theoretical models. The related maximally (N=4) supersymmetric gauge theory has served both as an important theoretical laboratory for developing new calculational techniques, as well as a link to string theory via the AdS/CFT duality. It is also emerging as a fruitful meeting point for ideas and methods from three distinct areas of theoretical physics: perturbative gauge theories, integrable systems, and string theory. The Project covers three related areas of perturbative gauge theories: computation of one- and two-loop amplitudes in perturbative quantum chromodynamics; incorporation of these amplitudes and development of a fully-matched parton-shower formalism and numerical code; and higher-loop computations in the N=4 supersymmetric theory. It aims to develop a general-purpose numerical-analytic hybrid program for computing phenomenologically-relevant one- and two-loop amplitudes in perturbative QCD. It also aims to develop a new parton shower allowing complete matching to leading and next-to-leading order computations. It seeks to further develop on-shell computational methods, and apply them to the N=4 supersymmetric gauge theory, with the goal of connecting perturbative quantities to their strong-coupling counterparts computed using the dual string theory.'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

STAHDPDE (2010)

Sparse Tensor Approximations of High-Dimensional and stochastic Partial Differential Equations

Read More  

SIGMA-VISION (2011)

"Sparsity, Image and Geometry to Model Adaptively Visual Processings"

Read More  

HEART4FLOW (2013)

Improved Diagnosis and Management of Heart Disease by 4D Blood Flow Assessment

Read More