Opendata, web and dolomites

SAPHELY

Self-amplified photonic biosensing platform for microRNA-based early diagnosis of diseases

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SAPHELY project word cloud

Explore the words cloud of the SAPHELY project. It provides you a very rough idea of what is the project "SAPHELY" about.

events    mu    mass    explore    scheme    beacon    3000    molecular    direct    nanoparticles    rates    industrial    fast    labelling    power    size    point    hybridization    detection    survival    amplification    cancer    academic    biomarkers    sensing    sub    mirna    programs    minutes    structures    handheld    deploying    sensitivity    clinical    technique    sensor    special    sensitive    pm    surface    consequent    identification    spectrometers    displacement    invasive    self    probes    attached    bandgap    translated    free    capture    preclinical    nanoparticle    treatments    screening    commercialisation    nanophotonic    tuneable    bulky    deployment    small    label    diseases    device    volume    disease    saphely    blood    weight    index    involvement    envisaged    paid    difficult    chip    significantly    validation    photonic    expensive    diagnosis    reducing    microrna    avoids    lt    heavy    bloodstream    care    poc    pcr    lasers    affordable    minimally    readout    ultra   

Project "SAPHELY" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT POLITECNICA DE VALENCIA 

Organization address
address: CAMINO DE VERA SN EDIFICIO 3A
city: VALENCIA
postcode: 46022
website: www.upv.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website https://saphely.eu/
 Total cost 3˙228˙838 €
 EC max contribution 3˙228˙838 € (100%)
 Programme 1. H2020-EU.2.1.1.6. (Micro- and nanoelectronics and photonics: Key enabling technologies related to micro- and nanoelectronics and to photonics, covering also quantum technologies)
 Code Call H2020-ICT-2014-1
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-02-01   to  2018-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT POLITECNICA DE VALENCIA ES (VALENCIA) coordinator 945˙704.00
2    MICROFLUIDIC CHIPSHOP GMBH DE (JENA) participant 443˙750.00
3    APR TECHNOLOGIES AB SE (ENKOEPING) participant 370˙081.00
4    AALBORG UNIVERSITET DK (AALBORG) participant 344˙915.00
5    UNIVERSITY OF EAST ANGLIA UK (NORWICH) participant 323˙513.00
6    MICROTEC GESELLSCHAFT FUR MIKROTECHNOLOGIE MBH DE (DUISBURG) participant 226˙250.00
7    Fundación Instituto Valenciano de Oncología ES (VALENCIA) participant 215˙625.00
8    EV GROUP E. THALLNER GMBH AT (ST FLORIAN AM INN) participant 207˙750.00
9    MEDICAL ENGINEERING TECHNOLOGIES LTD UK (DOVER) participant 151˙250.00

Map

 Project objective

The SAPHELY project focuses on the development and the preclinical validation of a nanophotonic-based handheld point-of-care (POC) analysis device for its application to the minimally-invasive early diagnosis of diseases, with a focus in cancer. Disease identification will be based in the fast (<5 minutes), ultra-sensitive (sub-pM) and label-free detection of novel highly-specific microRNA (miRNA) biomarkers, using a small volume of whole blood (<100 μL). This POC analysis device, which will have a low cost (envisaged cost < €3000), will significantly help in the implementation of mass screening programs, with the consequent impact on clinical management, reducing also costs of treatments, and increasing survival rates. The ultra-high sensitivity required for the direct detection of miRNA biomarkers present in the bloodstream will be achieved by using a novel sensing amplification technique. This technique is based in the use of molecular beacon capture probes with an attached high index nanoparticle, so that the hybridization events are translated into the displacement of these nanoparticles from the sensor surface. The use of this self-amplification technique avoids the use of complex PCR-based amplification methods or labelling processes, which are difficult to implement on-chip. The cost, size and weight reduction required for deploying an affordable handheld POC device will be achieved by using a novel power-based readout scheme for photonic bandgap sensing structures where the use of expensive, bulky and heavy tuneable lasers and spectrometers is avoided. Special attention will be paid within the SAPHELY project to explore the potential deployment and commercialisation of the analysis device, by means of the involvement of relevant academic and industrial partners, as well as end users.

 Publications

year authors and title journal last update
List of publications.
2017 Maria-Jose Bañuls, Pilar Jiménez-Meneses, Albert Meyer, Jean-Jacques Vasseur, François Morvan, Jorge Escorihuela, Rosa Puchades, Ángel Maquieira
Improved Performance of DNA Microarray Multiplex Hybridization Using Probes Anchored at Several Points by Thiol–Ene or Thiol–Yne Coupling Chemistry
published pages: 496-506, ISSN: 1043-1802, DOI: 10.1021/acs.bioconjchem.6b00624
Bioconjugate Chemistry 28/2 2019-05-30
2018 Ángela Ruiz-Tórtola, Francisco Prats-Quílez, Daniel González-Lucas, María-José Bañuls, Ángel Maquieira, Guy Wheeler, Tamas Dalmay, Amadeu Griol, Juan Hurtado, Jaime García-Rupérez
High sensitivity and label-free oligonucleotides detection using photonic bandgap sensing structures biofunctionalized with molecular beacon probes
published pages: 1717, ISSN: 2156-7085, DOI: 10.1364/BOE.9.001717
Biomedical Optics Express 9/4 2019-05-30
2018 Ángela Ruiz-Tórtola, Francisco Prats-Quílez, Daniel González-Lucas, María-José Bañuls, Ángel Maquieira, Guy Wheeler, Tamas Dalmay, Amadeu Griol, Juan Hurtado, Helge Bohlmann, Reiner Götzen, Jaime García-Rupérez
Experimental study of the evanescent-wave photonic sensors response in presence of molecular beacon conformational changes
published pages: e201800030, ISSN: 1864-063X, DOI: 10.1002/jbio.201800030
Journal of Biophotonics 2019-05-30
2015 Catarina Oliveira Silva, Steffen B. Petersen, Catarina Pinto Reis, Patrícia Rijo, Jesús Molpeceres, Henrik Vorum, Maria Teresa Neves-Petersen
Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability
published pages: e0144454, ISSN: 1932-6203, DOI: 10.1371/journal.pone.0144454
PLOS ONE 10/12 2019-05-30
2017 Daniel González-Lucas, María-José Bañuls, Jaime García-Rupérez, Ángel Maquieira
Covalent attachment of biotinylated molecular beacons via thiol-ene coupling. A study on conformational changes upon hybridization and streptavidin binding
published pages: 3231-3238, ISSN: 0026-3672, DOI: 10.1007/s00604-017-2310-4
Microchimica Acta 184/9 2019-05-30

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SAPHELY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SAPHELY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.1.6.)

POSEIDON (2015)

Plasmonic-based autOmated lab-on-chip SEnsor for the rapid In-situ Detection of LegiONella

Read More  

I-ALLOW (2015)

Imaging analysis in all lighting and off weather conditions

Read More  

SEERS (2015)

Snapshot spEctral imagEr for cost effective IR Surveillance

Read More