Opendata, web and dolomites

TRYP-QS

YAK kinase regulated trypanosome quorum sensing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TRYP-QS project word cloud

Explore the words cloud of the TRYP-QS project. It provides you a very rough idea of what is the project "TRYP-QS" about.

signals    additional    laboratory    components    differ    trypanosome    expression    gene    situation    optimise    cellular    hardship    livestock    expertise    benefit    family    trypanosomes    action    vivo    sense    yeasts    blood    kinase    mrna    mammals    transmission    transduction    environment    contributes    drive    bloodstream    researcher    regulation    sensing    genome    malaria    quiescence    interactions    training    saharan    tsetse    pivotal    dissect    nucleus    almost    sub    location    african    death    screen    act    regions    humans    function    stumpy    signal    slime    nutrient    vitro    transcriptional    post    limitation    molecule    signalling    parasites    africa    afflicted    preparation    arrest    molds    proteins    chances    molecules    spread    relocates    specialised    flies    relevance    stages    forms    parasite    dyrk    mechanisms    monitor    operates    kinetoplastids    exclusively    density    rnai    cell    encompassing    feeding    population    disease    sophisticated    host    extracellular    yak    cytoplasm    qs    quorum    communicate    exchange    seems    whilst   

Project "TRYP-QS" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF EDINBURGH 

Organization address
address: OLD COLLEGE, SOUTH BRIDGE
city: EDINBURGH
postcode: EH8 9YL
website: www.ed.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://matthews.bio.ed.ac.uk
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2015
 Duration (year-month-day) from 2015-05-05   to  2017-05-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF EDINBURGH UK (EDINBURGH) coordinator 183˙454.00

Map

 Project objective

African trypanosomes are parasites that cause disease in both humans and livestock throughout sub Saharan Africa, leading to death and hardship in afflicted regions. The disease is spread by blood-feeding tsetse flies and trypanosomes use sophisticated mechanisms to sense their environment in order to optimise their chances of transmission. In particular, whilst in the host bloodstream trypanosomes communicate with one another to monitor their own population density, this determining when they produce specialised transmission stages (so called ‘Stumpy’ forms). We have recently identified, using a genome-wide RNAi screen, components of the signal transduction pathway that drive this quorum sensing (QS) response. One component seems pivotal in the pathway- a molecule related to the YAK kinase of proteins. In yeasts and slime molds YAK kinase contributes to cell growth arrest in response to extracellular signals including nutrient limitation, whilst in mammals, related molecules of the DYRK family can also act in cellular quiescence. In this proposal we will investigate the function of trypanosome YAK kinase in the parasite's QS response. Specifically, we will investigate the kinase function in vitro and in vivo and dissect its action by following its location and targets. These are likely to differ from the situation in yeasts where YAK relocates to the nucleus and changes mRNA expression; in trypanosomes gene regulation is almost exclusively post transcriptional and likely operates within the cytoplasm. The function, location and interactions of YAK kinase in the QS signalling pathway is expected to provide comprehensive insight into how trypanosome parasites control their development in preparation for transmission, with additional important relevance for related parasites including other kinetoplastids and malaria. A two way benefit, encompassing training and expertise exchange between the researcher and host laboratory, will also be established.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRYP-QS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRYP-QS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

FictDial (2020)

What do we learn from dialogues in fiction?

Read More  

StressOME (2019)

Defining and modulating the stress granule proteome as a therapeutic strategy in Amyotrophic Lateral Sclerosis

Read More  

CO2RR VALCAT (2019)

Valence Band Tuning of Electrocatalysts for the CO2 Reduction Reaction

Read More