Opendata, web and dolomites


Do plants cooperate in reproduction? The effect of sharing pollination services on plant reproductive strategies

Total Cost €


EC-Contrib. €






 KinCoop project word cloud

Explore the words cloud of the KinCoop project. It provides you a very rough idea of what is the project "KinCoop" about.

potentially    relatives    communities    plants    attacks    history    interactions    genetically    hypothesis    neighbouring    outcomes    evolution    surprising    influence    beings    evolutionary    context    sentient    cooperate    pollination    floral    structures    empirical    crop    mating    interdisciplinary    combines    showing    gene    assessing    populations    transfer    shaped    seem    optimal    surrounding    plastic    although    adjustments    interact    positively    effect    frequently    efficiency    dynamics    attraction    environment    competition    kin    cooperation    population    attractive    allocation    warning    natural    strategies    reducing    tools    benefits    sciences    structured    pollinator    plant    reproductive    trait    little    closely    life    ecology    invested    linked    reproduction    good    allocated    patterns    functioning    behave    body    herbivore    theoretical    unlikely    fitness    resource    neighbours    recognition    environments    alter    social    sociological    individual    group   

Project "KinCoop" data sheet

The following table provides information about the project.


Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website
 Total cost 272˙480 €
 EC max contribution 272˙480 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-GF
 Starting year 2015
 Duration (year-month-day) from 2015-08-01   to  2018-07-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Although social interactions in non-sentient beings such as plants might seem unlikely, there are good reasons to expect them to be important. Because plant populations are very often strongly genetically structured, with neighbouring plants frequently being relatives, their behaviour is expected to have been shaped by natural selection within this social context. Plants interact very strongly with their neighbours, and there is an increasing body of evidence showing kin recognition and cooperation with relatives, e.g., warning against herbivore attacks and reducing resource competition. However, little is known about how plants behave in a social context in terms of their reproductive strategies. This is surprising, because reproduction is a key life-history trait defining gene transfer, and thus is closely linked to fitness and to the evolutionary potential that will eventually determine the functioning and dynamics of plant populations and communities. Neighbouring plants commonly facilitate pollination. Therefore, the resources invested in floral attractive structures for one individual can positively impact individual fitness, but also the fitness of neighbours, increasing both individual and group benefits. Thus, natural selection should be expected to favour plastic adjustments of the resources allocated to pollinator attraction to the surrounding social environment. I will test this hypothesis, assessing how different social environments might influence optimal allocation strategies and the effect this will have on mating patterns and plant fitness. To address this objective, I will use an interdisciplinary approach that combines theoretical modelling and empirical testing, bringing tools from the sociological sciences to the study plant ecology and evolution. My project will contribute to our understanding of how plants cooperate during reproduction to alter plant population dynamics, with potentially useful outcomes for crop efficiency.


year authors and title journal last update
List of publications.
2018 Yves Cuenot, José M. Gómez, Adela González-Megias, John R. Pannell, Rubén Torices
Characterization of microsatellite markers for Moricandia moricandioides (Brassicaceae) and related species
published pages: e01172, ISSN: 2168-0450, DOI: 10.1002/aps3.1172
Applications in Plant Sciences 6/8 2019-06-17
2016 Lucía De Soto, Rubén Torices, Olivier Broennimann, Antoine Guisan, Susana Rodríguez-Echeverría
Is there a bias in participation and visibility against women in ecology? A comparison between Iberian and Swiss conferences
published pages: 105-111, ISSN: 1697-2473, DOI: 10.7818/ECOS.2016.25-3.12
Ecosistemas 25/3 2019-06-17
2018 Rubén Torices, José M. Gómez, John R. Pannell
Kin discrimination allows plants to modify investment towards pollinator attraction
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-018-04378-3
Nature Communications 9/1 2019-06-17

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KINCOOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KINCOOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

PNAIC (2018)

Positive and Negative Asymmetry in Intergroup Contact: Its Impact on Linguistic Forms of Communication and Physiological Responses

Read More