Opendata, web and dolomites

DENDRITESONBORDERS SIGNED

Neuronal and dendritic recruitment on neocortical area borders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DENDRITESONBORDERS project word cloud

Explore the words cloud of the DENDRITESONBORDERS project. It provides you a very rough idea of what is the project "DENDRITESONBORDERS" about.

larger    inputs    original    scientific    recruitment    specialization    besides    basic    perform    cluster    populations    experiments    integration    function    one    asymmetry    special    theories    active    perspective    subunits    link    borders    operations    segregated    serving    neuron    relate    border    cortical    manipulate    network    faced    streams    context    generate    experimental    governing    poorly    elaborate    hope    describing    health    computations    output    act    relationships    scales    effort    brain    disease    computationally    neurons    activity    interpret    answers    separable    functional    branches    neocortex    scaffold    striking    seek    relationship    networks    cortex    understudied    neural    vivo    arbors    constraints    dendritic    principles    innovative    area    electrically    neuronal    ask    societal    interesting    performed    yield    local    sub    leveraging    developmentally    dendrites    anatomical    uncover    discovered    predict    visual    functionally    mouse    flow    amplify    synaptic    individual    speak    cellular    computational    elucidated   

Project "DENDRITESONBORDERS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: London
postcode: WC1E 6BT
website: http://www.ucl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.dendrites.org
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (London) coordinator 183˙454.00

Map

 Project objective

One of the most striking features of cortex is the elaborate and electrically active dendritic arbors of its neurons. Besides serving as a scaffold for synaptic inputs, dendrites can amplify inputs and act as computational subunits within a neuron. However, the principles governing the relationship between dendritic processing and information flow through cortical networks remain to be elucidated in vivo. These basic principles must be discovered as part of the effort to generate useful theories that relate sub-cellular processes like synaptic integration to computations performed by large populations of neurons. Such theories that link different scales of neural function are an important step for the larger scientific and societal goal to interpret, predict and manipulate neuronal and cortical function in health and disease. We seek to uncover principles describing the relationships between local network activity, dendritic recruitment, and neuronal output in neocortex in vivo in the anatomical context of a visual cortical area border in the mouse brain. Cortical area borders are poorly understood, but offer unique experimental opportunities. Our goal is to exploit the functional asymmetry present at borders to perform strong experiments that ask: Do functionally similar inputs cluster in dendritic arbors? How is the recruitment of individual dendrites related to local network activity? Do different dendritic branches perform separable computational operations in vivo? Going further, we will determine if different streams of information are segregated or integrated at borders. This basic feature of cortex is interesting both computationally and developmentally. The answers will speak to the constraints faced by cortex in managing information flow and creating functional specialization. We hope the innovative approach of leveraging the unique features of an understudied anatomical special case will yield results and a perspective that is original and useful.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DENDRITESONBORDERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DENDRITESONBORDERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More  

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More