Opendata, web and dolomites

DENDRITESONBORDERS SIGNED

Neuronal and dendritic recruitment on neocortical area borders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DENDRITESONBORDERS project word cloud

Explore the words cloud of the DENDRITESONBORDERS project. It provides you a very rough idea of what is the project "DENDRITESONBORDERS" about.

perform    networks    seek    striking    neocortex    performed    principles    computational    basic    brain    mouse    operations    separable    asymmetry    sub    anatomical    act    individual    larger    subunits    local    visual    computations    amplify    perspective    serving    recruitment    scaffold    cluster    relationships    cortical    leveraging    faced    populations    integration    network    borders    output    cellular    neurons    relationship    activity    describing    functionally    elaborate    predict    health    functional    area    interesting    hope    streams    dendritic    answers    one    experimental    scientific    effort    constraints    arbors    manipulate    speak    societal    vivo    elucidated    experiments    link    theories    synaptic    inputs    active    poorly    branches    developmentally    besides    context    dendrites    scales    neuronal    special    segregated    ask    electrically    cortex    innovative    flow    understudied    relate    computationally    neural    border    generate    interpret    uncover    discovered    neuron    yield    function    specialization    governing    original    disease   

Project "DENDRITESONBORDERS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: London
postcode: WC1E 6BT
website: http://www.ucl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.dendrites.org
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (London) coordinator 183˙454.00

Map

 Project objective

One of the most striking features of cortex is the elaborate and electrically active dendritic arbors of its neurons. Besides serving as a scaffold for synaptic inputs, dendrites can amplify inputs and act as computational subunits within a neuron. However, the principles governing the relationship between dendritic processing and information flow through cortical networks remain to be elucidated in vivo. These basic principles must be discovered as part of the effort to generate useful theories that relate sub-cellular processes like synaptic integration to computations performed by large populations of neurons. Such theories that link different scales of neural function are an important step for the larger scientific and societal goal to interpret, predict and manipulate neuronal and cortical function in health and disease. We seek to uncover principles describing the relationships between local network activity, dendritic recruitment, and neuronal output in neocortex in vivo in the anatomical context of a visual cortical area border in the mouse brain. Cortical area borders are poorly understood, but offer unique experimental opportunities. Our goal is to exploit the functional asymmetry present at borders to perform strong experiments that ask: Do functionally similar inputs cluster in dendritic arbors? How is the recruitment of individual dendrites related to local network activity? Do different dendritic branches perform separable computational operations in vivo? Going further, we will determine if different streams of information are segregated or integrated at borders. This basic feature of cortex is interesting both computationally and developmentally. The answers will speak to the constraints faced by cortex in managing information flow and creating functional specialization. We hope the innovative approach of leveraging the unique features of an understudied anatomical special case will yield results and a perspective that is original and useful.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DENDRITESONBORDERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DENDRITESONBORDERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

ErgThComplexSys (2020)

Ergodic theory for complex systems: a rigorous study of dynamics on heterogeneous networks

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More