Opendata, web and dolomites

DENDRITESONBORDERS SIGNED

Neuronal and dendritic recruitment on neocortical area borders

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DENDRITESONBORDERS project word cloud

Explore the words cloud of the DENDRITESONBORDERS project. It provides you a very rough idea of what is the project "DENDRITESONBORDERS" about.

societal    perspective    function    networks    neocortex    functional    integration    electrically    original    performed    serving    besides    striking    activity    synaptic    health    predict    streams    local    network    poorly    inputs    interesting    flow    ask    manipulate    anatomical    neural    larger    relate    scaffold    scales    disease    seek    elaborate    visual    relationship    cellular    arbors    computational    brain    principles    dendritic    discovered    cortical    basic    dendrites    experimental    border    developmentally    relationships    output    hope    link    cluster    context    generate    separable    recruitment    special    constraints    answers    experiments    individual    neurons    one    operations    uncover    theories    faced    amplify    mouse    perform    specialization    understudied    scientific    computations    borders    describing    sub    neuron    populations    elucidated    vivo    asymmetry    area    segregated    functionally    governing    computationally    act    subunits    speak    branches    yield    leveraging    innovative    interpret    effort    active    neuronal    cortex   

Project "DENDRITESONBORDERS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY COLLEGE LONDON 

Organization address
address: GOWER STREET
city: London
postcode: WC1E 6BT
website: http://www.ucl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.dendrites.org
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY COLLEGE LONDON UK (London) coordinator 183˙454.00

Map

 Project objective

One of the most striking features of cortex is the elaborate and electrically active dendritic arbors of its neurons. Besides serving as a scaffold for synaptic inputs, dendrites can amplify inputs and act as computational subunits within a neuron. However, the principles governing the relationship between dendritic processing and information flow through cortical networks remain to be elucidated in vivo. These basic principles must be discovered as part of the effort to generate useful theories that relate sub-cellular processes like synaptic integration to computations performed by large populations of neurons. Such theories that link different scales of neural function are an important step for the larger scientific and societal goal to interpret, predict and manipulate neuronal and cortical function in health and disease. We seek to uncover principles describing the relationships between local network activity, dendritic recruitment, and neuronal output in neocortex in vivo in the anatomical context of a visual cortical area border in the mouse brain. Cortical area borders are poorly understood, but offer unique experimental opportunities. Our goal is to exploit the functional asymmetry present at borders to perform strong experiments that ask: Do functionally similar inputs cluster in dendritic arbors? How is the recruitment of individual dendrites related to local network activity? Do different dendritic branches perform separable computational operations in vivo? Going further, we will determine if different streams of information are segregated or integrated at borders. This basic feature of cortex is interesting both computationally and developmentally. The answers will speak to the constraints faced by cortex in managing information flow and creating functional specialization. We hope the innovative approach of leveraging the unique features of an understudied anatomical special case will yield results and a perspective that is original and useful.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DENDRITESONBORDERS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DENDRITESONBORDERS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MBL-Fermions (2020)

Probing many-body localization dynamics using ultracold fermions in an optical lattice

Read More  

DEF2DEV (2019)

Identification of the mode of action of plant defensins during root development and plant defense responses.

Read More  

BiMetaCat (2019)

Two Are Better Than One: Bimetallic Catalysts for the Conversion of Lignin-Derived Aryl-Ethers

Read More