Opendata, web and dolomites

STARS SIGNED

Strategies Targeting Thyroid Hormone in Athrophy Related Syndromes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STARS project word cloud

Explore the words cloud of the STARS project. It provides you a very rough idea of what is the project "STARS" about.

cystic    proliferation    myopathies    amplification    manipulated    fibers    acting    accelerated    mechanism    chronic    concentration    devastating    signalling    active    actions    survival    amplified    prevention    attenuation    skeletal    altered    proof    endocrine    mechanisms    local    prevent    complication    published    signature    ageing    wasting    attenuated    nature    urgent    peptide    lower    contrary    regardless    enzymes    hormone    healthy    identification    treat    attempt    fibrosis    deiodinase    possibility    implications    hypothesis    atrophy    medical    action    manipulating    disciplinary    stem    breaking    data    methodology    cancer    diabetes    levels    decrease    plasma    disease    d3    reduces    d2    cells    dysfunctions    cross    discover    metabolism    signal    genetically    muscle    despite    progression    dissect    cell    functions    facilitates    stars    conjugates    pleiotropic    therapy    tissue    explore    mouse    diffuse    impacting    biology    onset    diseases    determines    critical    causes    heart    preliminary    treatments    determinant    catabolism    models    ground    thyroid    therapeutic   

Project "STARS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II 

Organization address
address: CORSO UMBERTO I, 40
city: NAPOLI
postcode: 80138
website: www.unina.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙310˙000 €
 EC max contribution 1˙310˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II IT (NAPOLI) coordinator 1˙310˙000.00

Map

 Project objective

Skeletal muscle wasting is a devastating complication of many chronic diseases including cancer, diabetes, chronic heart failure and cystic fibrosis. Despite its medical importance, there is, as yet, no effective means to treat this condition. Therefore, an urgent challenge is to discover treatments able to prevent its onset and/or progression. Thyroid hormone (TH) is a major determinant of muscle functions, and thyroid dysfunctions are leading causes of many myopathies. An emerging concept in this field is that TH’s pleiotropic actions can be amplified or attenuated at cell level by the deiodinase enzymes that can increase (D2) or decrease (D3) the active TH concentration regardless of hormone plasma levels. Based on recent published and new preliminary data, our working hypothesis is that “amplification” of TH action/signalling in muscle is critical in determining the accelerated muscle catabolism that causes muscle loss in numerous diseases. On the contrary, attenuation of the TH signal facilitates the proliferation/survival of muscle stem cells and reduces atrophy. Using genetically manipulated mouse models of altered TH metabolism, STARS aims to dissect the role of TH in muscle fibers and stem cells during the wasting processes. The ground-breaking nature of STARS is the possibility of manipulating a local-acting mechanism that determines the tissue concentration of a diffuse endocrine signal (TH), which is a critical determinant of muscle wasting. We will use state-of-the art methodology and recently generated mouse models in the attempt to explore the therapeutic potential of novel mechanisms to lower the TH signature at a specific muscle level. Proof-of-principle studies will be conducted with novel hormone-peptide conjugates for targeted disease prevention and therapy. The results will have cross-disciplinary implications, for the identification of novel potential therapeutic approaches impacting on stem cell biology, tissue metabolism and healthy ageing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STARS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STARS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EASY-IPS (2019)

a rapid and efficient method for generation of iPSC

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More