Opendata, web and dolomites

STARS SIGNED

Strategies Targeting Thyroid Hormone in Athrophy Related Syndromes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 STARS project word cloud

Explore the words cloud of the STARS project. It provides you a very rough idea of what is the project "STARS" about.

progression    published    cancer    amplified    biology    causes    diseases    cell    dysfunctions    data    disease    contrary    active    myopathies    therapy    discover    signal    reduces    levels    treatments    thyroid    deiodinase    survival    mechanisms    despite    lower    signalling    d2    stars    fibers    action    attenuation    pleiotropic    acting    chronic    manipulating    muscle    implications    methodology    mechanism    atrophy    wasting    fibrosis    metabolism    disciplinary    peptide    determines    d3    concentration    cells    devastating    genetically    breaking    heart    treat    explore    hypothesis    accelerated    regardless    facilitates    therapeutic    prevention    dissect    complication    impacting    identification    preliminary    signature    critical    onset    nature    tissue    ageing    local    diffuse    stem    skeletal    manipulated    cystic    endocrine    mouse    medical    conjugates    attempt    urgent    amplification    attenuated    proof    models    plasma    functions    possibility    enzymes    cross    proliferation    diabetes    prevent    catabolism    determinant    healthy    decrease    actions    altered    ground    hormone   

Project "STARS" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II 

Organization address
address: CORSO UMBERTO I, 40
city: NAPOLI
postcode: 80138
website: www.unina.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙310˙000 €
 EC max contribution 1˙310˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-STG
 Funding Scheme ERC-STG
 Starting year 2015
 Duration (year-month-day) from 2015-08-01   to  2021-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II IT (NAPOLI) coordinator 1˙310˙000.00

Map

 Project objective

Skeletal muscle wasting is a devastating complication of many chronic diseases including cancer, diabetes, chronic heart failure and cystic fibrosis. Despite its medical importance, there is, as yet, no effective means to treat this condition. Therefore, an urgent challenge is to discover treatments able to prevent its onset and/or progression. Thyroid hormone (TH) is a major determinant of muscle functions, and thyroid dysfunctions are leading causes of many myopathies. An emerging concept in this field is that TH’s pleiotropic actions can be amplified or attenuated at cell level by the deiodinase enzymes that can increase (D2) or decrease (D3) the active TH concentration regardless of hormone plasma levels. Based on recent published and new preliminary data, our working hypothesis is that “amplification” of TH action/signalling in muscle is critical in determining the accelerated muscle catabolism that causes muscle loss in numerous diseases. On the contrary, attenuation of the TH signal facilitates the proliferation/survival of muscle stem cells and reduces atrophy. Using genetically manipulated mouse models of altered TH metabolism, STARS aims to dissect the role of TH in muscle fibers and stem cells during the wasting processes. The ground-breaking nature of STARS is the possibility of manipulating a local-acting mechanism that determines the tissue concentration of a diffuse endocrine signal (TH), which is a critical determinant of muscle wasting. We will use state-of-the art methodology and recently generated mouse models in the attempt to explore the therapeutic potential of novel mechanisms to lower the TH signature at a specific muscle level. Proof-of-principle studies will be conducted with novel hormone-peptide conjugates for targeted disease prevention and therapy. The results will have cross-disciplinary implications, for the identification of novel potential therapeutic approaches impacting on stem cell biology, tissue metabolism and healthy ageing.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STARS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STARS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

CohoSing (2019)

Cohomology and Singularities

Read More