Opendata, web and dolomites

SELFORGANICELL SIGNED

Self-Organization of the Bacterial Cell

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SELFORGANICELL project word cloud

Explore the words cloud of the SELFORGANICELL project. It provides you a very rough idea of what is the project "SELFORGANICELL" about.

divisome    answer    fluorescence    one    organizing    regulated    modeling    dynamic    microscopy    resolution    uncover    force    organization    for    found    emergent    group    dynamics    self    mechanistic    time    machine    mechanochemical    assemble    vitro    biology    anatomy    act    space    analyze    synthases    components    invagination    experiments    constantly    principles    giving    organize    biophysics    peptidoglycan    collective    protein    interactions    itself    measured    escherichia    perform    fundamental    eukaryotic    cellular    controls    biological    avenues    sophisticated    link    interact    extremely    bacterial    relatively    living    membrane    biochemical    intracellular    remarkable    clear    proteins    remodeling    networks    wall    precisely    questions    vivo    machinery    largely    combined    quantitatively    individual    cell    bacterium    network    synthetic    molecular    assembly    reconstitution    give    generate    theoretical    emerges    underlying    division    coli    ten   

Project "SELFORGANICELL" data sheet

The following table provides information about the project.

Coordinator
INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA 

Organization address
address: Am Campus 1
city: KLOSTERNEUBURG
postcode: 3400
website: www.ist.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Project website http://looselab.org/research
 Total cost 1˙496˙686 €
 EC max contribution 1˙496˙686 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA AT (KLOSTERNEUBURG) coordinator 1˙496˙686.00

Map

 Project objective

One of the most remarkable features of biological systems is their ability to self-organize in space and time. Even a relatively simple cell like the bacterium Escherichia coli has a precisely regulated cellular anatomy, which emerges from dynamic interactions between proteins and the cell membrane. Self-organization allows the cell to perform extremely challenging tasks. For example, for cell division, more than ten different proteins assemble into a complex, yet highly dynamic machine, which controls the invagination of the cell while constantly remodeling itself. Although the individual components involved have been largely identified, how they act together to accomplish this challenge is not understood. It has become clear that sophisticated biochemical networks give rise to intracellular organization, but we have yet to uncover the underlying mechanistic principles. In this research proposal, I aim to develop a detailed mechanistic understanding of the self-organizing, emergent properties of the cell. To this end, my research group will develop novel in vitro reconstitution experiments combined with high-resolution fluorescence microscopy and theoretical modeling. Following this “bottom-up” approach, we will quantitatively analyze collective protein dynamics and emergent mechanochemical properties of the bacterial cell division machinery. I aim to answer the following fundamental questions: 1) What is the biochemical network giving rise to the dynamic assembly of the divisome? 2) How do the components of the divisome interact to generate force? 3) How do peptidoglycan synthases build the cell wall? By comparing protein dynamics in vitro with those measured in vivo, we will provide a link between molecular properties and the processes found in the living cell. This project will not only improve our understanding of the bacterial cell, but also open new research avenues for eukaryotic cell biology, synthetic biology and biophysics.

 Publications

year authors and title journal last update
List of publications.
2017 N. Baranova, M. Loose
Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers
published pages: 355-370, ISSN: 0091-679X, DOI: 10.1016/bs.mcb.2016.03.036
Methods in Cell Biology 137 , 2017-01-01 2020-03-20
2019 Paulo Caldas, Mar López-Pelegrín, Daniel J.G. Pearce, Nazmi B. Budanur, Jan Brugués, Martin Loose
ZapA stabilizes FtsZ filament bundles without slowing down treadmilling dynamics
published pages: , ISSN: , DOI: 10.1101/580944
2020-03-20
2018 Natalia Baranova, Philipp Radler, Victor M. Hernandez-Rocamora, Carlos Alfonso, Mar Lopez-Pelegrin, German Rivas, Waldemar Vollmer, Martin Loose.
FtsZ assembles the bacterial cell division machinery by a diffusion-and-capture mechanism.
published pages: , ISSN: , DOI: 10.1101/485656
2020-03-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SELFORGANICELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SELFORGANICELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More  

QLite (2019)

Quantum Light Enterprise

Read More