Opendata, web and dolomites

SELFORGANICELL SIGNED

Self-Organization of the Bacterial Cell

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SELFORGANICELL project word cloud

Explore the words cloud of the SELFORGANICELL project. It provides you a very rough idea of what is the project "SELFORGANICELL" about.

interact    invagination    theoretical    giving    wall    precisely    ten    biology    division    synthetic    dynamics    reconstitution    network    emergent    escherichia    quantitatively    networks    regulated    act    collective    biological    eukaryotic    clear    anatomy    assemble    assembly    emerges    bacterial    generate    uncover    link    resolution    machinery    biophysics    combined    sophisticated    measured    bacterium    underlying    peptidoglycan    membrane    extremely    fluorescence    force    synthases    organization    remarkable    organize    components    coli    give    mechanochemical    interactions    largely    vitro    organizing    controls    microscopy    group    living    itself    protein    fundamental    self    analyze    space    perform    avenues    mechanistic    individual    cellular    vivo    remodeling    answer    constantly    modeling    biochemical    cell    questions    principles    for    intracellular    found    divisome    experiments    machine    molecular    proteins    one    time    dynamic    relatively   

Project "SELFORGANICELL" data sheet

The following table provides information about the project.

Coordinator
INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA 

Organization address
address: Am Campus 1
city: KLOSTERNEUBURG
postcode: 3400
website: www.ist.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Project website http://looselab.org/research
 Total cost 1˙496˙686 €
 EC max contribution 1˙496˙686 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA AT (KLOSTERNEUBURG) coordinator 1˙496˙686.00

Map

 Project objective

One of the most remarkable features of biological systems is their ability to self-organize in space and time. Even a relatively simple cell like the bacterium Escherichia coli has a precisely regulated cellular anatomy, which emerges from dynamic interactions between proteins and the cell membrane. Self-organization allows the cell to perform extremely challenging tasks. For example, for cell division, more than ten different proteins assemble into a complex, yet highly dynamic machine, which controls the invagination of the cell while constantly remodeling itself. Although the individual components involved have been largely identified, how they act together to accomplish this challenge is not understood. It has become clear that sophisticated biochemical networks give rise to intracellular organization, but we have yet to uncover the underlying mechanistic principles. In this research proposal, I aim to develop a detailed mechanistic understanding of the self-organizing, emergent properties of the cell. To this end, my research group will develop novel in vitro reconstitution experiments combined with high-resolution fluorescence microscopy and theoretical modeling. Following this “bottom-up” approach, we will quantitatively analyze collective protein dynamics and emergent mechanochemical properties of the bacterial cell division machinery. I aim to answer the following fundamental questions: 1) What is the biochemical network giving rise to the dynamic assembly of the divisome? 2) How do the components of the divisome interact to generate force? 3) How do peptidoglycan synthases build the cell wall? By comparing protein dynamics in vitro with those measured in vivo, we will provide a link between molecular properties and the processes found in the living cell. This project will not only improve our understanding of the bacterial cell, but also open new research avenues for eukaryotic cell biology, synthetic biology and biophysics.

 Publications

year authors and title journal last update
List of publications.
2017 N. Baranova, M. Loose
Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers
published pages: 355-370, ISSN: 0091-679X, DOI: 10.1016/bs.mcb.2016.03.036
Methods in Cell Biology 137 , 2017-01-01 2020-03-20
2019 Paulo Caldas, Mar López-Pelegrín, Daniel J.G. Pearce, Nazmi B. Budanur, Jan Brugués, Martin Loose
ZapA stabilizes FtsZ filament bundles without slowing down treadmilling dynamics
published pages: , ISSN: , DOI: 10.1101/580944
2020-03-20
2018 Natalia Baranova, Philipp Radler, Victor M. Hernandez-Rocamora, Carlos Alfonso, Mar Lopez-Pelegrin, German Rivas, Waldemar Vollmer, Martin Loose.
FtsZ assembles the bacterial cell division machinery by a diffusion-and-capture mechanism.
published pages: , ISSN: , DOI: 10.1101/485656
2020-03-20

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SELFORGANICELL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SELFORGANICELL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More