Opendata, web and dolomites

DevTMF SIGNED

Development of Experimental Techniques and Predictive Tools to Characterise Thermo-Mechanical Fatigue Behaviour and Damage Mechanisms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DevTMF project word cloud

Explore the words cloud of the DevTMF project. It provides you a very rough idea of what is the project "DevTMF" about.

components    engine    aero    experimental    lives    standard    models    engines    tmf    technologies    disc   

Project "DevTMF" data sheet

The following table provides information about the project.

Coordinator
LINKOPINGS UNIVERSITET 

Organization address
address: CAMPUS VALLA
city: Linköping
postcode: 581 83
website: www.liu.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Total cost 994˙538 €
 EC max contribution 994˙538 € (100%)
 Programme 1. H2020-EU.3.4.5.5. (ITD Engines)
 Code Call H2020-CS2-CFP01-2014-01
 Funding Scheme /CS2-RIA
 Starting year 2016
 Duration (year-month-day) from 2016-02-01   to  2020-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LINKOPINGS UNIVERSITET SE (Linköping) coordinator 343˙873.00
2    SWANSEA UNIVERSITY UK (SWANSEA) participant 457˙735.00
3    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) participant 192˙930.00

Mappa

 Project objective

DevTMF takes the collective technical expertise and experience of working on thermo-mechanical fatigue (TMF) problems related to large aero-engines from three major centres of TMF research, namely Linköping, Swansea and Nottingham Universities in order to perform the activities of this topic. Together, the team will deliver significant technical innovations in following major topics to ensure world-leading competencies in aero engine and aircraft manufacturing sector for Europe:

1. Improvement and development of advanced standard and non-standard cutting-edge TMF experimental methods and harmonisation of the test methods to enable standardisation across the field by performing comprehensive studies into the phenomena for a range of representative parts, 2. Advanced metallurgical assessment of structural disc alloy(s) taking into account the effect of multiple critical variables (e.g. R-ratio, phase, environment, dwell) to determine active damage mechanisms that control the life under TMF operating conditions, and 3. Physically based coupled models, with experimental validation, capable of predicting TMF initiation and propagation lives of components subjected to complex engine cycles and suitable for implementation in the computer programmes used to predict component lives.

The project will take the above-described technologies to TRL5. Two business opportunities are addressed by this work: (i) at the end of the project the materials understanding and lifing models will be used to optimise/uprate the performance of existing individual aero engine components and (ii) over a longer timescale influence the development of new disc alloys and ultra efficient future designs (Advance, Ultrafan). The developed TMF technologies will enable industrial aero gas turbines used for aero engines to be operated at higher temperatures and pressures, improving their efficiency and reducing fuel consumption (by 1%) and CO2 emissions. Hence improved competitiveness and marker share.

 Work performed, outcomes and results:  advancements report(s) 

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DEVTMF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DEVTMF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.4.5.5.)

HIPERFAN (2018)

HIgh PERformance Journal Bearing Technology for new geared TurboFAN generations

Read More  

CIDAR (2018)

Combustion species Imaging Diagnostics for Aero-engine Research

Read More  

ICTUS (2018)

Instrumented engine Cradle for the TUrboprop demonstrator ground teSt

Read More