Opendata, web and dolomites

SEAQUEL SIGNED

Structured Ensembles of Atoms for Quantum Engineering of Light

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "SEAQUEL" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙500˙000.00

Map

 Project objective

This project aims at building a new versatile platform for quantum engineering of light, with the unique ability to create deterministic coherent photon-photon interactions tunable in range, strength and dimensionality. It will explore a new avenue towards this goal, combining cutting-edge advances of atomic physics with ideas inspired by nanophotonics: a cold micro-structured gas of interacting atoms will act as a Bragg mirror saturable by a single photon, strongly coupling a controlled number of spatial modes in an optical resonator. This flexible, efficient, dynamically-controlled system will be used to test the limits of fundamental no-go theorems in quantum logic, measure physical quantities inaccessible to standard detectors, and deterministically engineer massively entangled light beams for Heisenberg-limited sensing. Ultimately, it will give access to a yet unexplored regime where intracavity photons form a strongly correlated quantum fluid, with spatial and temporal dynamics ideally suited to perform real-time, single-particle-resolved simulations of non-trivial topological effects appearing in condensed-matter systems.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SEAQUEL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SEAQUEL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

Neurovulnerability (2019)

Molecular mechanisms underlying selective neuronal death in motor neuron diseases

Read More  

SuperH (2019)

Discovery and Characterization of Hydrogen-Based High-Temperature Superconductors

Read More  

InsideChromatin (2019)

Towards Realistic Modelling of Nucleosome Organization Inside Functional Chromatin Domains

Read More