Opendata, web and dolomites


Enabling flexoelectric engineering through modeling and computation

Total Cost €


EC-Contrib. €






 FLEXOCOMP project word cloud

Explore the words cloud of the FLEXOCOMP project. It provides you a very rough idea of what is the project "FLEXOCOMP" about.

harvesting    transducers    accurately    components    ubiquitous    accounting    gradients    flexoelectricity    mechanical    deformation    ferroelectric    geometries    versa    electromechanical    plan    self    made    demonstrated    engineering    film    material    nascent    writing    mediated    nanoscale    films    metamaterials    exploring    conceived    voltage    polarization    piezoelectric    sensors    electrode    thin    analyze    flexoelectric    materials    biocompatible    uniform    inhomogeneous    tools    continuum    transduce    mindset    coupled    small    electric    dielectrics    transduction    suggested    actuators    questions    composites    vice    physics    polar    multiscale    variations    unfortunately    energy    understand    designs    infrastructure    electrical    designed    configurations    variety    technologies    macroscopic    lack    effect    models    polymers    scales    minimal    behavior    powered    genuinely    length    solids    limited    computational    generation    piezoelectricity    soft    strain    quantify    experimental   

Project "FLEXOCOMP" data sheet

The following table provides information about the project.


Organization address
postcode: 8034

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Piezoelectric materials transduce electrical voltage into mechanical strain and vice-versa, which makes them ubiquitous in sensors, actuators, and energy harvesting systems. Flexoelectricity is a related but different effect, by which electric polarization is coupled to strain gradients, i.e. it requires inhomogeneous deformation. Flexoelectricity is present in a much wider variety of materials, including non-polar dielectrics and polymers, but is only significant at small length-scales. Flexoelectricity has demonstrated its potential in information technologies, by flexoelectric-mediated mechanical writing in ferroelectric thin films at the nanoscale, or in flexoelectric electromechanical transducers. It has been suggested that flexoelectricity could enable piezoelectric composites made out of non-piezoelectric components, including soft materials, which could be used in biocompatible and self-powered small-scale devices. Flexoelectricity is a nascent field with major open questions. Furthermore, experimental devices and material designs are limited by what we can understand and analyze, and unfortunately, we lack general engineering analysis tools for flexoelectricity. As a result, current flexoelectric devices are only minimal variations of configurations conceived within the uniform-strain mindset of piezoelectricity. Our main objective in this proposal is to develop an advanced computational infrastructure to quantify flexoelectricity in solids, focusing on continuum models but also exploring multiscale aspects. We plan to use it to (1) analyze accurately flexoelectricity accounting for general geometries, electrode configurations, and material behavior, (2) identify new physics emerging flexoelectricity, and (3) propose, build and test a new generation of thin-film devices, composites and metamaterials for electromechanical transduction, genuinely designed to exploit small-scale flexoelectricity and make it available at macroscopic scales.


year authors and title journal last update
List of publications.
2019 David Codony, Onofre Marco, Sonia Fernández-Méndez, Irene Arias
An Immersed Boundary Hierarchical B-spline method for flexoelectricity
published pages: , ISSN: 0045-7825, DOI:
Computer Methods in Applied Mechanics and Engineering 2019-06-06
2019 Amir Abdollahi, Neus Domingo, Irene Arias, Gustau Catalan
Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-09266-y
Nature Communications 10/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLEXOCOMP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLEXOCOMP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)


The Enemy of the Good: Towards a Theory of Moral Progress

Read More  


The Mass Politics of Disintegration

Read More  

SUExp (2018)

Strategic Uncertainty: An Experimental Investigation

Read More