Opendata, web and dolomites


Enabling flexoelectric engineering through modeling and computation

Total Cost €


EC-Contrib. €






 FLEXOCOMP project word cloud

Explore the words cloud of the FLEXOCOMP project. It provides you a very rough idea of what is the project "FLEXOCOMP" about.

polar    understand    polymers    uniform    scales    experimental    electrode    mindset    electromechanical    self    limited    effect    minimal    tools    composites    metamaterials    vice    behavior    harvesting    writing    piezoelectricity    plan    transduction    macroscopic    generation    polarization    flexoelectric    accurately    powered    computational    lack    made    nanoscale    suggested    components    configurations    technologies    electric    genuinely    multiscale    film    material    length    coupled    energy    engineering    voltage    quantify    mechanical    conceived    exploring    ubiquitous    physics    unfortunately    transducers    piezoelectric    deformation    demonstrated    accounting    continuum    biocompatible    infrastructure    geometries    designs    solids    sensors    versa    inhomogeneous    questions    analyze    mediated    thin    flexoelectricity    strain    dielectrics    gradients    ferroelectric    designed    soft    nascent    models    variety    materials    variations    films    transduce    small    electrical    actuators   

Project "FLEXOCOMP" data sheet

The following table provides information about the project.


Organization address
postcode: 8034

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-STG
 Funding Scheme ERC-STG
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2021-08-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Piezoelectric materials transduce electrical voltage into mechanical strain and vice-versa, which makes them ubiquitous in sensors, actuators, and energy harvesting systems. Flexoelectricity is a related but different effect, by which electric polarization is coupled to strain gradients, i.e. it requires inhomogeneous deformation. Flexoelectricity is present in a much wider variety of materials, including non-polar dielectrics and polymers, but is only significant at small length-scales. Flexoelectricity has demonstrated its potential in information technologies, by flexoelectric-mediated mechanical writing in ferroelectric thin films at the nanoscale, or in flexoelectric electromechanical transducers. It has been suggested that flexoelectricity could enable piezoelectric composites made out of non-piezoelectric components, including soft materials, which could be used in biocompatible and self-powered small-scale devices. Flexoelectricity is a nascent field with major open questions. Furthermore, experimental devices and material designs are limited by what we can understand and analyze, and unfortunately, we lack general engineering analysis tools for flexoelectricity. As a result, current flexoelectric devices are only minimal variations of configurations conceived within the uniform-strain mindset of piezoelectricity. Our main objective in this proposal is to develop an advanced computational infrastructure to quantify flexoelectricity in solids, focusing on continuum models but also exploring multiscale aspects. We plan to use it to (1) analyze accurately flexoelectricity accounting for general geometries, electrode configurations, and material behavior, (2) identify new physics emerging flexoelectricity, and (3) propose, build and test a new generation of thin-film devices, composites and metamaterials for electromechanical transduction, genuinely designed to exploit small-scale flexoelectricity and make it available at macroscopic scales.


year authors and title journal last update
List of publications.
2019 David Codony, Onofre Marco, Sonia Fernández-Méndez, Irene Arias
An Immersed Boundary Hierarchical B-spline method for flexoelectricity
published pages: , ISSN: 0045-7825, DOI:
Computer Methods in Applied Mechanics and Engineering 2019-06-06
2019 Amir Abdollahi, Neus Domingo, Irene Arias, Gustau Catalan
Converse flexoelectricity yields large piezoresponse force microscopy signals in non-piezoelectric materials
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-09266-y
Nature Communications 10/1 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLEXOCOMP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLEXOCOMP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

POLAR (2020)

Polarization and its discontents: does rising economic inequality undermine the foundations of liberal societies?

Read More  

METAPoF (2019)

Metaphor as the Purpose of the Firm

Read More  

TORCH (2019)

ThermoacOustic instabilities contRol in sequential Combustion cHambers

Read More