Opendata, web and dolomites

B-Brighter SIGNED

Enhancing OLED device performance using Fused Borylated Materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 B-Brighter project word cloud

Explore the words cloud of the B-Brighter project. It provides you a very rough idea of what is the project "B-Brighter" about.

sensors    ir    metal    fluorescence    stability    whilst    phosphorescent    incorporate    illumination    synthesised    vision    s1    impressive    limiting    gaps    switch    excellent    modify    emitters    enabled    emission    effect    oleds    quantum    metals    thermally    night    preferable    energies    tadf    attractive    moieties    delayed    excitons    discover    communications    efficiency    organic    exhibit    fabricate    near    diodes    nir    rare    methodology    red    flexible    supply    light    calculations    sub    optimal    fabrication    ease    absence    competitive    yields    emitting    fused    optical    t1    activated    performance    commercially    precious    region    free    hopefully    desirable    pi    class    displays    break    spectra    o2    deep    conjugated    possess    moderate    lifetimes    oled    small    desired    band    25    photoluminescence    barrier    led    efficiencies    solid    date    device    relative    forming    phenomena    erc    infra    good    inherently    relatively    pt    materials   

Project "B-Brighter" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF MANCHESTER 

Organization address
address: OXFORD ROAD
city: MANCHESTER
postcode: M13 9PL
website: www.manchester.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 149˙662 €
 EC max contribution 149˙662 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2015-PoC
 Funding Scheme ERC-POC
 Starting year 2016
 Duration (year-month-day) from 2016-08-01   to  2018-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF MANCHESTER UK (MANCHESTER) coordinator 149˙662.00

Map

 Project objective

Organic Light Emitting Diodes (OLEDs) are attractive for use in high efficiency illumination and flexible displays. The current state of the art OLED materials use Ir or Pt based phosphorescent materials, which whilst achieving impressive efficiencies have significant cost, and supply issues associated with rare precious metals. Metal free OLEDs are preferable based on low relative cost and ease of fabrication but to date have not been competitive with Ir / Pt based OLEDs. This is because metal free OLEDs have relatively low efficiency as light emission is due to fluorescence inherently limiting the systems to 25% of excitons. A new approach has now enabled metal free OLEDs to break this efficiency barrier – using the phenomena of thermally activated delayed fluorescence (TADF). However, TADF emitters in the deep red / Near infra red (NIR) region of the spectra (desired for applications in optical communications, night vision devices and sensors) are rare and currently sub-optimal.

ERC funded research led us to discover a new methodology for forming fused pi conjugated materials that possess desirable properties for OLEDs this includes small band gaps, excellent emission in the deep red and NIR-region of the spectra and good stability. Whilst these materials exhibit excellent solid state photoluminescence quantum yields for emitters in the deep red and NIR region of the spectra their performance in OLED devices was only moderate. This is due to the absence of TADF in the materials studied to date. This work program will modify our current materials to maintain the desirable properties but to incorporate moieties that switch on TADF. Materials will be selected based on calculations (of relative S1/T1 energies), synthesised and assessed for TADF (lifetimes / effect of O2 etc.), with best in class used to fabricate OLED devices. This will lead to increases in OLED device efficiency hopefully to a level that is commercially viable.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "B-BRIGHTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "B-BRIGHTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

PEGASOS (2019)

Photon Emitting Gated Arrays for Scalable On-chip quantum Systems

Read More  

HydroLieve (2018)

A long-lasting non-migrating hydrogel for relieving chronic pain

Read More