Opendata, web and dolomites


XTPL - A new generation of TCF layers for use in displays and thin film photovoltaic cells

Total Cost €


EC-Contrib. €






Project "XTPL" data sheet

The following table provides information about the project.


Organization address
address: STABLOWICKA 147
postcode: 54 066
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Poland [PL]
 Project website
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.5. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing)
2. H2020-EU.2.1.3. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2017
 Duration (year-month-day) from 2017-01-01   to  2017-06-30


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    XTPL SPOLKA AKCYJNA PL (WROCLAW) coordinator 50˙000.00


 Project objective

Our nanotechnology based printing solution is dedicated for use in PV cells and in home electronics (LCD displays). We intend to increase economic attractiveness of the use of the photovoltaics (by its cost reduction), in case of home electronics, energy efficiency will be increased by reduction of energy consumption of displays (by increasing the efficiency of electric energy delivered to the light-emitting layer). It will be possible thanks to our disruptive innovation, that is a new generation of TCF layers for use in displays and thin film photovoltaic cells. eXtra Transparent Printed Lines (XTPL) are a response to the rising market demand for new TCF layers (transparent conductive film). For many years ITO (indium-tin oxide) has been a standard and it was sufficient for the majority of applications. But now ITO is no longer adequate. Our transparent conductive layer having advantageous characteristics in relation to ITO (higher transparency, lower electrical resistance, higher flexibility). Moreover XTPL based on the broadly available resources characterized by lower price volatility relative to indium or lower impact of this volatility on the total cost of the layer. Our preliminary plan assume sale of XTPL printers with a license (licensing) to LCD & PV cells' market leaders. In terms of market saturation of competing technologies, the competitive analysis indicates that the market of alternative to ITO conductive layers is currently at an early stage of development and the level of market saturation is low, which gives scope for the implementation of the outcome of the project.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "XTPL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "XTPL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.;H2020-EU.2.1.3.;H2020-EU.2.3.1.;H2020-EU.2.1.2.)


Super Productive Line Printing Inkjet

Read More  

HelpingHAND (2018)

A 3D printed, affordable myoelectrical prosthetic hand of personalizeable size for optimal comfort and functionality

Read More  

Volumizer (2018)

A natural, non-surgical, and safe facial filler which treats the root cause of facial ageing.

Read More