Opendata, web and dolomites

MECHADIAN SIGNED

Mechanobiology of the cellular circadian clock

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MECHADIAN project word cloud

Explore the words cloud of the MECHADIAN project. It provides you a very rough idea of what is the project "MECHADIAN" about.

synchronously    mechanism    directs    organisms    24    influence    imaging    synchronous    regulation    genetic    interdisciplinary    interplay    circadian    oscillations    cellular    mcf    core    cycle    differentiation    goals    subjecting    entrained    expression    physiological    matrix    pattern    potentially    circuit    unravel    biological    model    rigidities    oscillatory    link    cytoskeleton    elucidate    undergo    mechanical    combine    10    post    daily    technologies    share    mammals    components    extracellular    dysregulation    pathological    computational    molecular    proteins    force    anticipate    add    gene    10a    phk    chronomedicine    works    microenvironment    categorised    gap    hour    layer    microscopy    conserved    cell    cells    mechanics    genes    biology    cancer    living    fill    rhythmicity    stem    contribution    never    tools    differs    biomechanical    tissues    basis    transcriptional    maintenance    traction    light    types    patterns    clock    mammalian   

Project "MECHADIAN" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA 

Organization address
address: CARRER BALDIRI REIXAC PLANTA 2A 10-12
city: BARCELONA
postcode: 8028
website: http://www.ibecbarcelona.eu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 158˙121 €
 EC max contribution 158˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-29   to  2020-06-28

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT DE BIOENGINYERIA DE CATALUNYA ES (BARCELONA) coordinator 158˙121.00

Map

 Project objective

The circadian clock is the biological mechanism that directs the physiological ~24 hour oscillations that most living organisms undergo to anticipate the daily pattern of light. In mammals, that rhythmicity results from a highly conserved genetic circuit –based on transcriptional and post-transcriptional regulation– that works synchronously at a cellular level and differs among tissues. Around the 10% of the mammalian proteins, including essential components of the cell cycle and differentiation pathways have been categorised as circadian. Thus, a clock dysregulation may have pathological consequences, which is the case in some types of cancer. Although synchronous circadian cells share a common mechanical microenvironment, the contribution of mechanics to the clock maintenance has never been addressed. To fill this gap, the aim of this project is to unravel a) the impact of the mechanical microenvironment on the cellular clock, b) the influence of circadian oscillations on the mechanical behaviour of the cells and c), the interplay between mechanics and the clock during stem cell differentiation. To achieve these goals, we will combine state-of-the-art technologies in cell mechanics, molecular biology, imaging, and computational modelling. As model system we will use entrained MCF-10a and PHK stem cells. By subjecting them to a range of extracellular matrix rigidities, we will measure the influence of mechanics on the circadian expression of core clock, cytoskeleton and differentiation genes. We will then use traction force microscopy to study the rhythmicity of cell mechanics and, through computational tools, we will link gene expression patterns and force oscillatory behaviour in order to elucidate the molecular basis of the ‘biomechanical clock’. This interdisciplinary study will add a new layer of regulation to both cell mechanics and the circadian clock. As such, the results obtained here will potentially impact on the field of chronomedicine.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MECHADIAN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MECHADIAN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

SAInTHz (2020)

Structuration of aqueous interfaces by Terahertz pulses: A study by Second Harmonic and Sum Frequency Generation

Read More