Opendata, web and dolomites

ElectroBee SIGNED

Mechanisms of electroreception in bees and other terrestrial animals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ElectroBee project word cloud

Explore the words cloud of the ElectroBee project. It provides you a very rough idea of what is the project "ElectroBee" about.

arise    medium    conductive    arm    gymnotid    coelacanth    little    bumblebees    modality    poised    dolphin    potentially    flower    evolution    structures    ampere    behavioural    aerial    hairs    many    honeybees    mammalian    functions    discovered    terrestrial    vertebrates    extend    mormirid    works    arthropods    date    electro    sensation    aquatic    ae    biophysical    lamprey    escaped    sensitive    model    understand    mechanosensory    first    mainly    reveal    detection    foundational    biologically    cathodic    television    animals    meters    quantity    opening    animal    sense    mechanical    sensory    vibration    sharks    browsing    exploring    basis    detect    electrometers    physical    environment    putative    transform    electroreception    bearing    humans    surrounding    fish    platypus    electric    entire    diversity    weak    electrosensory    ecology    ecological    hair    rays    mechanisms    species    generation    coupling    establishing    near    showed    had    adaptive    informative    scientific   

Project "ElectroBee" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF BRISTOL 

Organization address
address: BEACON HOUSE QUEENS ROAD
city: BRISTOL
postcode: BS8 1QU
website: www.bristol.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website https://research-information.bristol.ac.uk/en/persons/daniel-robert
 Total cost 2˙294˙320 €
 EC max contribution 2˙294˙320 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-ADG
 Funding Scheme ERC-ADG
 Starting year 2017
 Duration (year-month-day) from 2017-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF BRISTOL UK (BRISTOL) coordinator 2˙294˙320.00

Map

 Project objective

Many animal species can detect the electric fields in their environment. Electroreception has mainly been studied in aquatic vertebrates; fish like sharks and rays, gymnotid and mormirid electric fish, the lamprey, the platypus, the coelacanth, and one mammalian species, a dolphin. We have discovered that bumblebees can detect and learn about the weak electric fields that arise when they approach a flower. This is the first example of electroreception in a non-conductive medium, aerial electroreception (AE). Recently, we showed that AE can be achieved through the electro-mechanical coupling of mechanosensory hairs to the weak electric field surrounding the animal. This is much like the hair-raising sensation humans used to experience by browsing an arm near to a cathodic television set. Yet, humans cannot sense the weak electric fields surrounding a flower, so this potentially informative physical quantity had escaped scientific attention. To date, little is known about AE, its sensory ecology and evolution.

I propose to study the biophysical basis of AE, addressing how and why it works, establishing its adaptive value and exploring its diversity. To achieve this, I will lead research to further understand AE in honeybees and bumblebees, our existing model systems, but also extend research to other arthropods bearing putative electrosensory structures. I will do so using state-of-the-art vibration measurement technology, biologically-relevant electric field generation, sensitive Ampere-meters and electrometers, and behavioural methods. The proposed research will transform our knowledge of electroreception. It will characterize novel detection mechanisms, reveal their adaptive diversity and establish their sensory ecological functions in terrestrial animals. The planned work is poised to be foundational, opening up an entire field of research into this novel, but potentially widespread, sensory modality.

 Publications

year authors and title journal last update
List of publications.
2019 J.C. Matthews, M.D. Wright, D. Clarke, E.L. Morley, H. Silva, A.J. Bennett, D. Robert, D.E. Shallcross
Urban and rural measurements of atmospheric potential gradient
published pages: 42-50, ISSN: 0304-3886, DOI: 10.1016/j.elstat.2018.11.006
Journal of Electrostatics 97 2019-09-02
2019 K.A. Nicoll, R.G. Harrison, V. Barta, J. Bor, R. Brugge, A. Chillingarian, J. Chum, A.K. Georgoulias, A. Guha, K. Kourtidis, M. Kubicki, E. Mareev, J. Matthews, H. Mkrtchyan, A. Odzimek, J.-P. Raulin, D. Robert, H.G. Silva, J. Tacza, Y. Yair, R. Yaniv
A global atmospheric electricity monitoring network for climate and geophysical research
published pages: 18-29, ISSN: 1364-6826, DOI: 10.1016/j.jastp.2019.01.003
Journal of Atmospheric and Solar-Terrestrial Physics 184 2019-09-02
2018 Erica L. Morley, Daniel Robert
Electric Fields Elicit Ballooning in Spiders
published pages: 2324-2330.e2, ISSN: 0960-9822, DOI: 10.1016/j.cub.2018.05.057
Current Biology 28/14 2019-09-02

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ELECTROBEE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ELECTROBEE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More  

RODRESET (2019)

Development of novel optogenetic approaches for improving vision in macular degeneration

Read More