Opendata, web and dolomites

CMEQIP TERMINATED

Cavity-mediated entanglement of trapped-ion qubit arrays for quantum information processing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CMEQIP project word cloud

Explore the words cloud of the CMEQIP project. It provides you a very rough idea of what is the project "CMEQIP" about.

employs    qubits    fold    gates    operates    avenue    optical    photons    platform    free    coupling    chain    modes    first    atoms    group    scaling    interface    entangle    indicate    fault    internal    interactions    performed    times    benefits    error    neutral    mediating    qip    demonstration    returning    protocols    techniques    bus    photon    crystals    chains    linear    individual    long    space    length    feasible    pursue    zone    oxford    apparatus    tolerant    cavity    axis    motional    computing    quantum    holds    shown    crowding    regime    msca    3d    shared    ion    emitted    mediated    achievable    vuletic    sr    fidelities    separate    cooperativity    mode    photonic    ions    entangling    coulomb    vacuum    gt    collective    spectrum    attractive    enhanced    enhancement    photonically    preventing    qubit    spaced    mit    inefficient    scalability    drive    prof    correction    arrays    trap    trapped    nodes    gate    fidelity    fellow    entanglement    coherence    interfaced    reached   

Project "CMEQIP" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 269˙857 €
 EC max contribution 269˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-11-01   to  2021-10-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 269˙857.00
2    MASSACHUSETTS INSTITUTE OF TECHNOLOGY US (CAMBRIDGE) partner 0.00

Map

 Project objective

Long-coherence times, high-fidelity individual-ion control and entanglement-mediating Coulomb interactions make trapped-ion qubits a very attractive platform for quantum information processing (QIP). Entangling gates performed by coupling the internal states of ions in the same potential well via their shared motional mode have recently reached the high fidelities necessary for the implementation of quantum error correction protocols which can enable fault-tolerant QIP. However, scaling this type of gate up to long ion chains (>20 ions) is not feasible: large ion numbers lead to crowding of the motional mode spectrum of the chain, eventually preventing addressing of specific modes. Cavity-mediated ion-photon coupling is a promising avenue to scalability. Photons emitted into a shared cavity mode can be used as a quantum bus to entangle short ion arrays. If implemented between arrays of N ions, this photonic interface benefits from an N-fold enhancement of the ion-photon coupling. Strong collective coupling has been shown with neutral atoms and 3D ion crystals, but has not been performed in a system with individual-qubit control and Coulomb-mediated entanglement capabilities. Prof.Vuletic’s MIT group operates a multi-zone ion trap which holds several linear ion arrays (of up to 20 ions each) spaced along the trap axis and features an integrated optical cavity. Cooperativity measurements indicate that the strong-coupling regime should be achievable with this apparatus for cavity-mediated entanglement of arrays as short as 5 ions in length. As an MSCA fellow, I will use this trap to pursue the first demonstration of cavity-mediated entanglement of two spatially separate ion arrays. On returning to Oxford, I will implement cavity-enhanced ion-photon coupling between Sr ions in separate vacuum systems, as part of Oxford's drive to build photonically-interfaced quantum computing nodes, which currently employs inefficient free-space ion-photon coupling techniques.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CMEQIP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CMEQIP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More  

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

SymCO (2020)

Asymptotic Symmetries: from Concepts to Observations

Read More