Opendata, web and dolomites

UNIFIED SIGNED

Fuel injection from subcritical to supercritical P-T conditions: a unified methodology for coupled in-nozzle flow, atomisation and air-fuel mixing processes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 UNIFIED project word cloud

Explore the words cloud of the UNIFIED project. It provides you a very rough idea of what is the project "UNIFIED" about.

core    relies    injection    vapour    almost    brings    unknown    scientific    numerical    engines    employed    decades    transfer    supercritical    simulations    academic    equations    area    compressibility    turbulence    flow    form    industrial    pressure    enhances    infrastructure    fluid    demand    cavitation    liquid    return    fossil    turn    consumption    experimental    thermodynamics    resolved    interface    mixing    models    combination    complying    immiscible    cfd    quantifying    atomisation    guide    double    2020    polluting    injected    vaporisation    physical    host    meet    reduces    diffused    gas    emission    validation    legislations    time    experiments    techniques    emissions    model    prevailing    outgoing    modelled    trade    data    society    mass    disappearance    aforementioned    forthcoming    near    transportation    experts    fuel    air    critical    rate    subject    point    significantly    couple    capturing    nozzle    mixture    interfaces    benefit   

Project "UNIFIED" data sheet

The following table provides information about the project.

Coordinator
CITY UNIVERSITY OF LONDON 

Organization address
address: NORTHAMPTON SQUARE
city: LONDON
postcode: EC1V 0HB
website: www.city.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 251˙857 €
 EC max contribution 251˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-10-08   to  2021-10-07

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CITY UNIVERSITY OF LONDON UK (LONDON) coordinator 251˙857.00
2    Sandia Corporation US (Albuquerque) partner 0.00

Map

 Project objective

Fossil fuel consumption is expected to almost double over the next 3 decades in order to meet the increasing demand for infrastructure, trade and transportation. Development of engines complying with the forthcoming 2020 emission legislations, relies on the effective design of advanced high-pressure fuel injection systems and represents a key industrial priority. Emissions can be reduced when fuel is injected against air at P-T conditions well above the fuel’s critical point; the prevailing supercritical fluid conditions result to disappearance of the liquid-gas interface, which in turn, reduces vaporisation time and enhances significantly air-fuel mixing. Combination of experiments (outgoing phase) with CFD simulations (return phase) of the in-nozzle flow, fuel atomisation and mixing processes under such conditions form the core subject of the proposed research. The experimental work includes currently unknown physical properties measurements near the fuel’s critical point; these will be modelled with complex equations of state for a wide range of P-T conditions. Moreover, the state-of-the-art experimental techniques and equipment of the US host, will be employed for quantifying the near-nozzle fuel atomisation and mixing at those conditions. These experimental data will guide the development and validation of a new state-of-the-art CFD model able to couple the aforementioned multi-phase flow processes through a combination of physical models and numerical methods. These include interface capturing of immiscible and diffused interfaces, scale-resolved turbulence, mass transfer rate (cavitation and vaporisation) and real-fluid thermodynamics addressing the compressibility effects for the liquid-vapour-air mixture. The project brings together research, academic and industrial experts from the US and Europe. It will advance scientific knowledge and will facilitate the design of less polluting engines for the benefit of the European area and society as a whole.

 Publications

year authors and title journal last update
List of publications.
2018 C. Rodriguez, P. Koukouvinis, M. Gavaises
Simulation of supercritical Diesel jets using the PC-SAFT EoS
published pages: , ISSN: 0896-8446, DOI: 10.1016/j.supflu.2018.11.003
The Journal of Supercritical Fluids 2019-07-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "UNIFIED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "UNIFIED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

Cartesian Networks (2020)

Cartesian Networks in Early Modern Europe: A Quantitative and Interdisciplinary Approach

Read More