Opendata, web and dolomites

Plasmonic Reactor SIGNED

Super-resolution mapping of hot carriers on plasmonic nanoparticles for enhanced photochemistry.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Plasmonic Reactor project word cloud

Explore the words cloud of the Plasmonic Reactor project. It provides you a very rough idea of what is the project "Plasmonic Reactor" about.

equilibrium    single    catalytic    pairs    molecule    absorption    larger    reactive    electromagnetic    reactivity    fine    unexplored    shape    therapies    imaging    difficult    plasmon    carriers    photochemical    lsprs    size    pnps    sensitive    conversion    energies    nanoscale    arise    resolution    optical    electrons    pharmaceutical    efficiencies    spots    perspective    energy    optoelectronic    chemical    sections    hole    cross    motion    radiative    transformation    light    localized    chemistry    create    spatial    heat    electron    coherent    particles    scattering    bond    generation    nanoparticles    hybrid    photochemistry    close    plasmonic    hot    opened    decay    resonances    sensing    mediated    dramatic    excitation    previously    possibilities    motivated    enhancements    selectivity    map    nearby    mapping    optimization    medical    enabled    spot    particle    offers    enhanced    enhancement    harvesting    masked    injected    causing    manipulating    material    bimetallic    ultra    surface    highlight    photonics    reactions    nps    bulk   

Project "Plasmonic Reactor" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙457 €
 EC max contribution 171˙457 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 79˙730.00
2    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) participant 91˙727.00

Map

 Project objective

Plasmonic nanoparticles (PNPs) present unique optoelectronic properties that depend on their size and shape and are not present in larger particles or the bulk material. Such properties arise from their localized surface plasmon resonances (LSPRs). LSPRs are the light-induced coherent motion of electrons that produce dramatic enhancements of the electromagnetic field close to the surface of the particle (hot spots) as well as large scattering and absorption cross-sections. These properties have motivated the use of PNPs in many applications including ultra-sensitive sensing, light harvesting, imaging, photonics, and medical and pharmaceutical therapies. Very recently, a previously unexplored feature of LSPRs opened a new perspective. Non-radiative decay of LSPRs can result in the excitation of electron-hole pairs with high, far-from-equilibrium energies known as hot carriers. These carriers can be injected into a nearby molecule causing its chemical transformation. Manipulating LSPRs allows for the fine control of the reactive properties of hot carriers, in a similar way in which it has enabled control of electromagnetic fields. This offers new possibilities in photochemistry, including enhanced efficiencies, spatial distribution of reactivity and bond selectivity. However, determining the role of hot carriers in plasmon-mediated chemistry is a difficult task as it could be masked by other catalytic properties (heat generation and field enhancement). The main objectives of this proposal are: 1) The implementation of an optical method for reactive-spot mapping, which will allow to create a map that highlight areas of low and high photochemical reactivity on single PNPs with high spatial resolution. 2) The control of plasmon-mediated growth of PNPs with nanoscale spatial selectivity. Determination of the role of hot carriers in these reactions. 3) Study, design and optimization of hybrid bimetallic plasmonic-catalytic NPs with applications in energy conversion.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLASMONIC REACTOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLASMONIC REACTOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More