Opendata, web and dolomites

Plasmonic Reactor SIGNED

Super-resolution mapping of hot carriers on plasmonic nanoparticles for enhanced photochemistry.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Plasmonic Reactor project word cloud

Explore the words cloud of the Plasmonic Reactor project. It provides you a very rough idea of what is the project "Plasmonic Reactor" about.

excitation    pnps    mapping    photochemistry    molecule    single    difficult    nearby    scattering    harvesting    unexplored    electron    generation    highlight    nanoparticles    localized    injected    opened    hot    energy    optical    enhancement    particle    create    pharmaceutical    size    motion    hole    plasmon    causing    enabled    heat    catalytic    perspective    therapies    decay    enhancements    plasmonic    pairs    sensitive    cross    photonics    reactivity    nps    carriers    electrons    photochemical    fine    reactive    transformation    shape    spot    resonances    material    chemical    selectivity    hybrid    motivated    optoelectronic    particles    sections    lsprs    larger    efficiencies    possibilities    mediated    ultra    bond    spatial    map    energies    coherent    radiative    medical    sensing    surface    equilibrium    reactions    chemistry    bulk    enhanced    dramatic    spots    manipulating    arise    electromagnetic    bimetallic    nanoscale    previously    offers    conversion    masked    imaging    close    optimization    absorption    resolution    light   

Project "Plasmonic Reactor" data sheet

The following table provides information about the project.

Coordinator
LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN 

Organization address
address: GESCHWISTER SCHOLL PLATZ 1
city: MUENCHEN
postcode: 80539
website: www.uni-muenchen.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 171˙457 €
 EC max contribution 171˙457 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    LUDWIG-MAXIMILIANS-UNIVERSITAET MUENCHEN DE (MUENCHEN) coordinator 79˙730.00
2    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) participant 91˙727.00

Map

 Project objective

Plasmonic nanoparticles (PNPs) present unique optoelectronic properties that depend on their size and shape and are not present in larger particles or the bulk material. Such properties arise from their localized surface plasmon resonances (LSPRs). LSPRs are the light-induced coherent motion of electrons that produce dramatic enhancements of the electromagnetic field close to the surface of the particle (hot spots) as well as large scattering and absorption cross-sections. These properties have motivated the use of PNPs in many applications including ultra-sensitive sensing, light harvesting, imaging, photonics, and medical and pharmaceutical therapies. Very recently, a previously unexplored feature of LSPRs opened a new perspective. Non-radiative decay of LSPRs can result in the excitation of electron-hole pairs with high, far-from-equilibrium energies known as hot carriers. These carriers can be injected into a nearby molecule causing its chemical transformation. Manipulating LSPRs allows for the fine control of the reactive properties of hot carriers, in a similar way in which it has enabled control of electromagnetic fields. This offers new possibilities in photochemistry, including enhanced efficiencies, spatial distribution of reactivity and bond selectivity. However, determining the role of hot carriers in plasmon-mediated chemistry is a difficult task as it could be masked by other catalytic properties (heat generation and field enhancement). The main objectives of this proposal are: 1) The implementation of an optical method for reactive-spot mapping, which will allow to create a map that highlight areas of low and high photochemical reactivity on single PNPs with high spatial resolution. 2) The control of plasmon-mediated growth of PNPs with nanoscale spatial selectivity. Determination of the role of hot carriers in these reactions. 3) Study, design and optimization of hybrid bimetallic plasmonic-catalytic NPs with applications in energy conversion.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PLASMONIC REACTOR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PLASMONIC REACTOR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

BioNanoLip (2020)

Bioactive lipids at the ocular surface: from Langmuir surface balance to ophthalmic nanoemulsions

Read More  

CHES (2020)

Resilience of Coastal Human-Environment Systems

Read More  

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More