Opendata, web and dolomites

DiaMoND SIGNED

Development of composite Metamaterials having Negative stiffness inclusions and exceptional Damping properties

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DiaMoND project word cloud

Explore the words cloud of the DiaMoND project. It provides you a very rough idea of what is the project "DiaMoND" about.

mechanical    serious    citizens    benefits    despite    treatments    secondment    lives    layer    structure    multifunctional    levels    generating    aeronautical    ratio    performance    multiple    close    millions    form    keep    acceptable    mematerials    jobs    layered    minimum    damping    140    space    worldwide    obliged    limits    composites    inclusion    industry    stiffness    completion    made    propagation    poor    acoustics    isolation    ones    environmental    endanger    manufacturing    hundreds    world    hardware    acoustic    successful    integrity    wave    simulations    manufacturers    exhibit    host    core    fraction    socio    additional    turnover    exceptional    employed    applicability    combined    negative    intense    expert    structural    materials    structures    family    nowadays    leader    conventional    least    er    metallic    500    mass    extensively    pollution    attained    airbus    internal    scenarios    purely    academic    volume    vibration    extra    billion    dynamic    fellowship    composite    modern    constrained    noise    preliminary    superior    300    optimization    alone    economic    employ    expensive    diamond    conservative    transport    2013    industrial    outstanding   

Project "DiaMoND" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF NOTTINGHAM 

Organization address
address: University Park
city: NOTTINGHAM
postcode: NG7 2RD
website: www.nottingham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-05   to  2020-09-04

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF NOTTINGHAM UK (NOTTINGHAM) coordinator 195˙454.00

Map

 Project objective

The EU is a world leader in the development and manufacturing of structural products for the transport industry, with the aeronautical sector alone providing more than 500,000 jobs, generating a turnover of close to €140 billion in 2013 . Noise is a serious form of environmental pollution affecting the lives of hundreds of millions of citizens worldwide and having multiple socio-economic consequences. Moreover, intense vibration can endanger the structural integrity and performance of equipment and hardware. Modern industrial structures are made of composite materials due to their well-known benefits. Despite their superior structural characteristics, composite structures exhibit poor dynamic and acoustic isolation levels compared to conventional metallic ones. In order to keep noise and vibration levels at acceptable limits, structural manufacturers are nowadays obliged to extensively employ constrained-layer damping treatments that are expensive in terms of additional mass and space usage. DiaMoND will bring together an ER being expert in ‘wave propagation and acoustics of mematerials’ and a host institution carrying leading academic know-how in ‘design, optimization and manufacturing of multifunctional composites’. The Fellowship aims at developing novel structures having exceptional damping properties combined with the outstanding structural performance of a layered composite at minimum extra mass, volume and cost. This will be attained through the inclusion of internal purely mechanical Negative Stiffness elements in the core of the structure. According to conservative preliminary simulations, a successful completion of DiaMoND will deliver structures that have a damping ratio at least 300% superior (for the same stiffness/mass fraction) to that of the structures currently employed in the transport industry. The secondment of the ER to AIRBUS will ensure the applicability of this new family of structures to real-world industrial scenarios.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DIAMOND" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DIAMOND" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

StressOME (2019)

Defining and modulating the stress granule proteome as a therapeutic strategy in Amyotrophic Lateral Sclerosis

Read More  

PreSpeech (2018)

Predicting speech: what and when does the brain predict during language comprehension?

Read More  

BirthControlEnvirons (2019)

Contraception meets the environment: everyday contraceptive practices, politics, and futures in a toxic age

Read More