Opendata, web and dolomites

DYCOCIRC SIGNED

Basal ganglia circuit mechanisms underlying dynamic cognitive behavior

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 DYCOCIRC project word cloud

Explore the words cloud of the DYCOCIRC project. It provides you a very rough idea of what is the project "DYCOCIRC" about.

events    toward    re    dissect    animals    ganglia    themselves    implicitly    computational    free    neural    reward    correlate    uniquely    deep    time    da    planning    either    choosing    stages    promise    safer    understand    moment    recording    cell    actions    cognition    judgments    people    do    experiments    types    laboratory    striatal    populations    fruitful    inputs    kinds    cortico    relationship    neuron    manipulate    signals    mice    neurons    frontal    relate    dopaminergic    circuit    implicated    bg    function    immediacy    onto    dynamics    broadly    previously    dopamine    bases    mapping    neuromodulatory    mysteries    mechanisms    existence    decision    faced    poised    dynamic    nature    demonstrated    representation    weigh    circuits    judge    rats    exert    journey    generate    explicitly    transformed    unlock    behavior    image    critical    difficult    brain    input    satisfying    learning    regarding    basal    choices    multiple    population    elapsed    internal   

Project "DYCOCIRC" data sheet

The following table provides information about the project.

Coordinator
FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD 

Organization address
address: AVENIDA BRASILIA, CENTRO DE INVESTIGACAO DA FUNDACAO CHAMPALIMAUD
city: LISBOA
postcode: 1400-038
website: http://fchampalimaud.org/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Portugal [PT]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-04-01   to  2023-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACAO D. ANNA SOMMER CHAMPALIMAUD E DR. CARLOS MONTEZ CHAMPALIMAUD PT (LISBOA) coordinator 2˙000˙000.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

You’re faced with a difficult choice. What do you do? Most people will, either explicitly or implicitly, weigh the possible consequences their decision. This involves an internal journey through possible events. Its these kinds of dynamic processes and their mapping onto behavior that characterize higher brain function. And yet, their very internal nature is both what makes them of critical interest and so difficult to study. Here, we propose to study a simple, well-controlled decision-making behavior wherein mice have to generate a dynamic, internal representation of elapsed time in order to make choices that result in reward. We focus on frontal cortico-basal ganglia circuits and their dopaminergic inputs that together are broadly implicated in cognition and involved in the production of this particular behavior. We have demonstrated previously that striatal population dynamics and dopamine neuron activity both correlate with and exert control over animals’ judgments. Having identified key signals at multiple stages of the BG circuit related to this decision in rats and mice, my laboratory is now uniquely poised to dissect the circuit mechanisms by which such signals are generated and transformed into actions. Specifically, we will 1) Measure activity of specific cell types at multiple stages of the BG as mice judge duration. 2) Image and manipulate the activity of DA neurons while recording from neural populations in the BG to determine the relationship between neuromodulatory input, neural dynamics, and behavior. 3) Relate the activity of cortico-striatal inputs to striatal responses during behavior to understand the computational and circuit bases of striatal activity. These experiments promise to unlock deep mysteries regarding how animals free themselves from the immediacy of the current moment, learning, planning, and choosing their path toward a safer, more fruitful, and satisfying existence.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DYCOCIRC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DYCOCIRC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

ENTRAPMENT (2019)

Septins: from bacterial entrapment to cellular immunity

Read More  

HydroLieve (2018)

A long-lasting non-migrating hydrogel for relieving chronic pain

Read More