Opendata, web and dolomites

GB-CORRELATE SIGNED

Correlating the State and Properties of Grain Boundaries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GB-CORRELATE project word cloud

Explore the words cloud of the GB-CORRELATE project. It provides you a very rough idea of what is the project "GB-CORRELATE" about.

criteria    microstructure    transformations    engineering    deposition    alloy    ground    defects    surface    form    harvested    al    materials    unlocking    networks    similarly    powerful    grains    hierarchical    atomic    strength    transport    stability    films    multidimensional    revolutionized    correlated    experiments    polycrystalline    prominent    synthesis    si    ni    mechanics    complexity    solute    transfer    tailor    throughput    lay    computational    separating    thermodynamic    cu    spanning    tested    focusses    guidelines    correlate    detect    phases    space    demonstrators    infinite    ag    structural    interstitial    gb    boundaries    resolving    functional    correlating    property    compositional    phase    mobility    create    exceptional    microscopy    establishing    interlinking    predicting    transitions    spectroscopy    strategy    micromechanical    situ    science    thin    analogon    mechanically    grain    combinatorial    diagrams    film    alloys    sophisticated    employed    individual    resolved    substitutional    expanding    special    statistical   

Project "GB-CORRELATE" data sheet

The following table provides information about the project.

Coordinator
MAX PLANCK INSTITUT FUR EISENFORSCHUNG GMBH 

Organization address
address: MAX PLANCK STRASSE 1
city: DUSSELDORF
postcode: 40237
website: http://www.mpie.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙500˙000 €
 EC max contribution 2˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-08-01   to  2023-07-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX PLANCK INSTITUT FUR EISENFORSCHUNG GMBH DE (DUSSELDORF) coordinator 2˙500˙000.00

Map

 Project objective

Phase diagrams revolutionized materials development by predicting the conditions for phase stability and transformations, providing a thermodynamic concept for materials design including synthesis, processing and application. Similarly, surface science has established thermodynamic concepts for surface states and transitions, but the analogon for grain boundaries (GB) is just emerging due to their complexity. GB are among the most prominent microstructure defects separating grains in polycrystalline materials spanning a multidimensional space. Unlocking control of GB phases and their transitions will enable a new level of materials design allowing to tailor functional & structural properties. This proposal targets on (i) predicting and resolving GB phase transitions, (ii) establishing guidelines for GB phase transitions and GB phase diagrams, (iii) correlating GB phase transitions with property changes, (iv) providing compositional-structural design criteria for GB engineering, (v) which will be tested by demonstrators with tailored GB strength and GB mobility. GB-CORRELATE focusses on Cu and Al alloys in form of thin films as this allows to implement a hierarchical strategy expanding from individual special GB to GB networks and a transfer of the GB concepts to thin film applications. The infinite number of GB requires also statistical approaches; combinatorial thin film deposition will be used to establish Cu and Al alloy films with substitutional (Ag, Al, Cu, Si, Ni) and interstitial (B) solute elements. High throughput grain growth experiments will be employed to detect GB phase transitions by changes in GB mobility. Advanced atomic resolved correlated microscopy and spectroscopy supported by powerful computational approaches will identify GB phases and correlate them with transport properties. Sophisticated in-situ micromechanical studies lay the ground for interlinking GB phases and GB mechanics, finally harvested to create mechanically exceptional materials.

 Publications

year authors and title journal last update
List of publications.
2019 Nataliya V. Malyar, Hauke Springer, Jürgen Wichert, Gerhard Dehm, Christoph Kirchlechner
Synthesis and mechanical testing of grain boundaries at the micro and sub-micro scale
published pages: 5-18, ISSN: 0025-5300, DOI: 10.3139/120.111286
Materials Testing 61/1 2020-03-11
2018 Nicolas J. Peter, Timofey Frolov, Maria J. Duarte, Raheleh Hadian, Colin Ophus, Christoph Kirchlechner, Christian H. Liebscher, Gerhard Dehm
Segregation-Induced Nanofaceting Transition at an Asymmetric Tilt Grain Boundary in Copper
published pages: , ISSN: 0031-9007, DOI: 10.1103/physrevlett.121.255502
Physical Review Letters 121/25 2020-03-11
2020 T. Oellers, V. G. Arigela, C. Kirchlechner, G. Dehm, A. Ludwig
Thin-Film Microtensile-Test Structures for High-Throughput Characterization of Mechanical Properties
published pages: , ISSN: 2156-8952, DOI: 10.1021/acscombsci.9b00182
ACS Combinatorial Science 2020-03-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GB-CORRELATE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GB-CORRELATE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CUSTOMER (2019)

Customizable Embedded Real-Time Systems: Challenges and Key Techniques

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More