Opendata, web and dolomites

Target5LO SIGNED

Targeting 5-lipoxygenase in the context of Acute Myeloid Leukemia

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Target5LO project word cloud

Explore the words cloud of the Target5LO project. It provides you a very rough idea of what is the project "Target5LO" about.

sought    strategies    vitro    pipelines    lipoxygenase    lapachone    forms    il7r    successful    modulator    anti    fact    site    pernicious    reactions    acute    fda    biology    yield    fast    treat    cancers    myeloid    displaying    bioactivity    discontinued    vivo    entities    cornerstone    applicability    dosage    drug    biophysical    leukaemia    discovery    spatiotemporal    biomarker    implications    validated    anticancer    considering    adverse    disease    approved    linkers    drugs    blood    investigation    off    leukemia    lo    narrow    showed    validate    constructs    therapeutic    modulate    preclinical    efficacy    untargeted    disseminated    medical    mouse    foresee    cells    polypharmacology    unmet    accurate    model    toxicity    expression    chemistry    learning    allosteric    profile    lp    overcome    dozens    naphthoquinone    natural    deployment    aml    clinical    completion    antibody    quantitative    correlated    programs    conjugate    cleavable    release    machine    employing    imperative    synthetic    profound    windows    exploring    disclosed    chemical    hope    conjugates    broad    patients    models    medicinal   

Project "Target5LO" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-CAR
 Starting year 2018
 Duration (year-month-day) from 2018-03-01   to  2020-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 195˙454.00

Map

 Project objective

Drug efficacy is cornerstone for successful drug discovery programs. Considering that, on average, FDA-approved drugs modulate dozens of off-targets it remains imperative to find strategies to overcome adverse drug reactions correlated with pernicious polypharmacology. In fact, several chemical entities displaying promising anticancer are discontinued from drug development pipelines due to narrow therapeutic windows in pre-clinical models. Here, we propose the development of antibody-drug conjugates exploring the unique bioactivity profile of the naphthoquinone natural product-lapachone (Lp) against acute myeloid leukemia (AML), an unmet medical need. Using a machine learning method, we disclosed Lp as an allosteric modulator of 5-lipoxygenase (5-LO), correlated its anticancer activity with 5-LO expression in blood cancers and showed its efficacy in a disseminated mouse model of AML.

In this project, a comprehensive investigation of novel means for the targeted delivery of Lp to leukaemia cells is sought after, considering both the promising bioactivity profile but also the significant toxicity in untargeted dosage forms. We apply state-of-the-art synthetic medicinal chemistry to design and access cleavable linkers, and site-specifically conjugate Lp to an anti-IL7R antibody, a validated biomarker in AML and other leukaemia’s. We aim at employing biophysical and chemical biology approaches to validate quantitative and fast release of Lp with accurate spatiotemporal control in in vitro disease models. Finally, we will validate the deployment of the constructs through preclinical in vivo models of AML. We foresee broad applicability of the developed technology, which may have profound implications in drug discovery. Upon successful completion of this research program, we hope to yield a new targeted drug to treat AML patients with improved efficacy and reduced side-effects.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TARGET5LO" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TARGET5LO" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MY MITOCOMPLEX (2021)

Functional relevance of mitochondrial supercomplex assembly in myeloid cells

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

LUNG-BIM (2019)

Induction of B cell immunity in the lung mucosa

Read More