Opendata, web and dolomites

KeepTimeWithTheHeat SIGNED

Keeping in time with the heat: how oscillating temperatures set the plant circadian clock

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 KeepTimeWithTheHeat project word cloud

Explore the words cloud of the KeepTimeWithTheHeat project. It provides you a very rough idea of what is the project "KeepTimeWithTheHeat" about.

bolster    external    light    union    perceived    candidates    co    laid    reaching    special    training    dramatic    computational    hardiness    maximise    transition    industrial    course    revolutionise    grown    disciplinary    regulator    cues    century    independent    output    phenotype    rhythms    operation    plants    communicated    environment    day    discovered    enhancement    genetic    hypothesis    proportion    dark    survival    plant    molecular    remarkably    signalling    rhythmic    clock    environmental    explore    public    hampered    entrainment    seedlings    inter    faithful    effect    length    nearly    academic    phytochrome    entrain    clocks    plans    paid    commercial    temperature    experiments    circadian    genome    anticipate    enhances    designed    thermal    efforts    relationship    discover    innovation    predictable    contribution    pif4    researcher    talk    entrainer    entrained    sectors    cross    central    contain    seedling    physiological    fluctuations    oscillators    interacting    critical    termed   

Project "KeepTimeWithTheHeat" data sheet

The following table provides information about the project.

Coordinator
AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS 

Organization address
address: CALLE SERRANO 117
city: MADRID
postcode: 28006
website: http://www.csic.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 158˙121 €
 EC max contribution 158˙121 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-06-01   to  2020-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) coordinator 158˙121.00

Map

 Project objective

Plants contain rhythmic molecular oscillators (termed circadian clocks) which allow them to anticipate predictable environmental conditions over the course of a day. These clocks control a large proportion of the genome and have a dramatic effect on how plants respond to the environment. To ensure that it remains faithful to day length, the clock must be entrained using external cues. We have known for nearly a century that temperature fluctuations entrain plant circadian rhythms. Remarkably however, we are yet to discover how this information is perceived by the clock.

This proposal aims to discover how temperature sets the phase of the clock. Previous efforts have likely been hampered by the cross-talk between light and temperature signalling in plants. I have discovered that thermal entrainment of dark-grown seedlings enhances their survival during the critical dark to light transition and I will exploit this phenotype to identify the thermal entrainer. One of the most likely candidates is PHYTOCHROME INTERACTING FACTOR 4 (PIF4). PIF4 is currently seen as an output of the clock and so these results may revolutionise our understanding of this relationship. I have designed a inter-disciplinary approach including molecular-genetic, computational and physiological experiments in order to test this hypothesis. As PIF4 is a central regulator of plant development, results from this project will have a far-reaching impact.

The enhancement of seedling hardiness through thermal entrainment has potential commercial applications and I have laid out plans to explore these. The results will be communicated to both industrial and academic sectors and the wider public. Special attention has been paid to ensuring that this work will bolster the European Innovation Union through strengthening cross-European co-operation. The project has been designed to maximise my training opportunities and will make a significant contribution to my development as an independent researcher.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KEEPTIMEWITHTHEHEAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KEEPTIMEWITHTHEHEAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CoCoNat (2019)

Coordination in constrained and natural distributed systems

Read More  

TOPOCIRCUS (2019)

Simulations of Topological Phases in Superconducting Circuits

Read More  

MegaBiCycle (2019)

The role of megafauna in biogeochemical cycles and greenhouse gas fluxes: implications for climate and ecosystems throughout history

Read More