Opendata, web and dolomites

TheraSonix SIGNED

Ultrasonic Imaging and Drug Propulsion Into Tumors Using Genetically Encoded Gas Nanostructures

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TheraSonix project word cloud

Explore the words cloud of the TheraSonix project. It provides you a very rough idea of what is the project "TheraSonix" about.

nuclei    influence    buoyant    core    size    heterogeneous    inforce    match    prevents    circulation    protein    phenomenon    selectivity    drugs    gvs    bubbles    produces    extravasate    physically    expand    limitation    photosynthetic    re    gas    anticancer    deeper    agents    unlike    act    constants    microbubble    cavitation    efficacy    bind    propels    therapeutics    times    signal    therapeutic    dimensions    encoded    tissues    vasculature    drug    homing    tumor    hypothesize    class    tumors    position    mass    modern    engineering    filled    layers    shortcomings    professional    effect    ultrasonic    concentrated    diversify    overcoming    vesicles    microbubbles    cellular    local    stable    ultrasound    vastly    conventional    imaging    limited    penetration    vibration    overcome    nanoscale    utilize    nanostructures    cell    advancements    enhanced    therapies    waves    maturity    microbes    attractive    few    combine    pharmacokinetic    collapse    time    one    genetically    energy    penetrating    fluid    affordability    streaming   

Project "TheraSonix" data sheet

The following table provides information about the project.

Coordinator
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD 

Organization address
address: THE SENATE BUILDING TECHNION CITY 1
city: HAIFA
postcode: 32000
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 263˙385 €
 EC max contribution 263˙385 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD IL (HAIFA) coordinator 263˙385.00
2    CALIFORNIA INSTITUTE OF TECHNOLOGYCORP US (PASADENA) partner 0.00

Map

 Project objective

One of the important shortcomings of modern anticancer therapies is their limited penetration depth of only a few cell layers into the tumor. Concentrated around the heterogeneous vasculature, these drugs produce only a local therapeutic effect. In this project we propose a method of overcoming this limitation by engineering a novel class of gas-filled nanostructures capable of homing to tumor tissues, and using their vibration in response to ultrasound energy to deliver drugs deeper into the tumor core. The proposed approach is based on ultrasonic cavitation, a phenomenon in which gas bubbles expand and collapse under the influence of ultrasound waves. This process produces fluid streaming that propels drugs deeper into the tumor mass. The use of ultrasound for drug delivery is attractive due to its availability and affordability. However, the use of this technology is currently limited by the properties of conventional microbubble-based cavitation nuclei: their large size prevents them from penetrating into the tumor and their short circulation times do not match the pharmacokinetic time constants of many drugs. To overcome these challenges, we will utilize gas vesicles (GVs), a unique class of genetically encoded, gas-filled protein nanostructures derived from buoyant photosynthetic microbes, as cavitation nuclei. Unlike microbubbles, GVs are physically stable and their nanoscale dimensions have the potential to enable them to extravasate into tumors and bind to specific cellular targets. We hypothesize that GVs can act as both imaging agents and cavitation nuclei. If so, this therapeutic approach could have vastly improved efficacy and selectivity and the potential to combine cavitation-enhanced drug delivery with emerging advancements in cell based therapeutics. This project will enable the applicant to diversify his capabilities and experience beyond ultrasound imaging and signal processing and re-inforce a position of professional maturity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THERASONIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THERASONIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Widow Spider Mating (2020)

Immature mating as a novel tactic of an invasive widow spider

Read More  

GLORIOUS (2019)

Digital Poetry in Today’s Russia: Canonisation and Translation

Read More  

Kidney-Treg (2020)

Characterisation and impact of kidney-resident Tregs in kidney physiology and pathologies

Read More