Opendata, web and dolomites

TheraSonix SIGNED

Ultrasonic Imaging and Drug Propulsion Into Tumors Using Genetically Encoded Gas Nanostructures

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TheraSonix project word cloud

Explore the words cloud of the TheraSonix project. It provides you a very rough idea of what is the project "TheraSonix" about.

microbes    concentrated    ultrasound    pharmacokinetic    drugs    encoded    tumors    agents    imaging    tissues    phenomenon    signal    core    nanoscale    nuclei    cavitation    match    time    overcoming    selectivity    penetrating    extravasate    circulation    conventional    bind    stable    homing    heterogeneous    hypothesize    mass    streaming    physically    therapeutic    produces    overcome    limitation    cell    vasculature    nanostructures    vastly    maturity    genetically    enhanced    ultrasonic    affordability    advancements    layers    vibration    bubbles    diversify    tumor    shortcomings    attractive    re    gvs    photosynthetic    one    propels    constants    microbubbles    therapeutics    efficacy    utilize    engineering    gas    buoyant    waves    dimensions    microbubble    prevents    expand    cellular    few    modern    effect    professional    limited    combine    therapies    anticancer    unlike    influence    inforce    fluid    local    filled    act    times    energy    protein    size    collapse    deeper    class    position    penetration    drug    vesicles   

Project "TheraSonix" data sheet

The following table provides information about the project.

Coordinator
TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD 

Organization address
address: THE SENATE BUILDING TECHNION CITY 1
city: HAIFA
postcode: 32000
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 263˙385 €
 EC max contribution 263˙385 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-GF
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNION RESEARCH AND DEVELOPMENT FOUNDATION LTD IL (HAIFA) coordinator 263˙385.00
2    CALIFORNIA INSTITUTE OF TECHNOLOGYCORP US (PASADENA) partner 0.00

Map

 Project objective

One of the important shortcomings of modern anticancer therapies is their limited penetration depth of only a few cell layers into the tumor. Concentrated around the heterogeneous vasculature, these drugs produce only a local therapeutic effect. In this project we propose a method of overcoming this limitation by engineering a novel class of gas-filled nanostructures capable of homing to tumor tissues, and using their vibration in response to ultrasound energy to deliver drugs deeper into the tumor core. The proposed approach is based on ultrasonic cavitation, a phenomenon in which gas bubbles expand and collapse under the influence of ultrasound waves. This process produces fluid streaming that propels drugs deeper into the tumor mass. The use of ultrasound for drug delivery is attractive due to its availability and affordability. However, the use of this technology is currently limited by the properties of conventional microbubble-based cavitation nuclei: their large size prevents them from penetrating into the tumor and their short circulation times do not match the pharmacokinetic time constants of many drugs. To overcome these challenges, we will utilize gas vesicles (GVs), a unique class of genetically encoded, gas-filled protein nanostructures derived from buoyant photosynthetic microbes, as cavitation nuclei. Unlike microbubbles, GVs are physically stable and their nanoscale dimensions have the potential to enable them to extravasate into tumors and bind to specific cellular targets. We hypothesize that GVs can act as both imaging agents and cavitation nuclei. If so, this therapeutic approach could have vastly improved efficacy and selectivity and the potential to combine cavitation-enhanced drug delivery with emerging advancements in cell based therapeutics. This project will enable the applicant to diversify his capabilities and experience beyond ultrasound imaging and signal processing and re-inforce a position of professional maturity.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "THERASONIX" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "THERASONIX" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More