Opendata, web and dolomites


Real-time automatic aberration correction for easy high-resolution imaging in complex specimens, by STED and other point-scanning microscopy techniques

Total Cost €


EC-Contrib. €






Project "AdaptiveSTED" data sheet

The following table provides information about the project.


Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 180˙277 €
 EC max contribution 180˙277 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2020-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Super-resolution methods have recently given new life to fluorescence microscopy; they promise molecular-scale resolution, while maintaining all the benefits of traditional diffraction limited techniques, such as robust labeling methods and three-dimensional imaging capability. However, the current super-resolution techniques only work reliably with thin, brightly labeled, low background samples. STimulated Emission Depletion (STED) super-resolution microscopy in principle is exceptionally well suited for deep imaging, because point-illumination makes it possible to use an optical pinhole that significantly reduces the out-of-focus background signal. However, current STED microscope implementations suffer from very low signal-to-noise ratio (SNR), and the STED depletion beam intensity distribution – that is used to reduce the size of the effective fluorescence volume at the focus – is extremely sensitive to optical aberrations. In AdaptiveSTED project both of these issues will be addressed. The main goal of the AdaptiveSTED project is to develop a real-time aberration correction scheme for STED (and other point-scanning microscopes) that will allow robust, high resolution imaging deep inside complex, aberrating samples. A novel Single Photon Avalanche diode (SPAD) array detector, will make it possible to combine real-time wavefront sensing with high-SNR fluorescence recording into a single detector. The aberration correction scheme will be compatible with any poin-scanning microscopy technique: it will be thoroughly tested with a variety of biological samples in an open-access setting (anyone can use), in STED, two-photon and confocal imaging modes. The aberration correction system will be realized in collaboration with Prof. Martin J. Booth’s group at University of Oxford.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ADAPTIVESTED" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ADAPTIVESTED" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

NaWaTL (2020)

Narrative, Writing, and the Teotihuacan Language: Exploring Language History Through Phylogenetics, Epigraphy and Iconography

Read More