Opendata, web and dolomites

SUBTOL SIGNED

Understanding seaweed submergence tolerance mechanisms and translating them into land plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUBTOL project word cloud

Explore the words cloud of the SUBTOL project. It provides you a very rough idea of what is the project "SUBTOL" about.

submergence    drought    modify    improves    first    multiple    terrestrial    mechanisms    species    uniquely    physiology    gene    adaptive    factorial    initiates    organisms    tides    shares    plants    manipulate    biology    oxygen    strategies    naturally    arising    catastrophic    models    productivity    post    seaweeds    stresses    sometimes    salinity    counterpart    security    cycles    societal    desiccation    stress    vary    followed    academia    equivalent    regulation    oxidative    genetic    manipulating    time    incidences    ancestor    group    lack    green    agricultural    periodic    industry    accompanied    subtol    largely    ulva    completely    crops    generate    genes    takes    food    global    plant    climate    tolerance    benefit    flood    synthetic    flooding    model    waterlogging    natural    regulating    exposure    molecular    threatened    harnessing    land    seaweed    understand    sensitive    evolution    subsides    routes    paradigm    benefiting    data    absent   

Project "SUBTOL" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-05   to  2021-03-26

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 195˙454.00

Map

 Project objective

Global food security is threatened by climate change, particularly increased incidences of flooding and drought. Flooding has catastrophic impact on agricultural productivity, as most agricultural crops are sensitive to waterlogging and submergence. Flooding is a complex, multi-factorial stress involving lack of oxygen, followed by oxidative stress as the flood subsides and sometimes accompanied by changes in salinity. The molecular strategies land plants use to respond to submergence vary widely between species and are not fully understood due to lack of model organisms naturally adapted to such multiple stresses. SUBTOL takes a completely new approach to improving plant submergence tolerance: harnessing genetic mechanisms from green seaweeds, a group of organisms naturally adapted to both submergence and desiccation, for which there is no equivalent terrestrial counterpart. SUBTOL will use the emerging model green seaweed Ulva to understand the changes in gene regulation that occur during seaweed submergence and exposure. Ulva shares a common ancestor with land plants and is uniquely adapted to natural periodic submergence/exposure cycles arising from tides. SUBTOL sets a new research paradigm and will define for the first time the molecular mechanisms regulating both submergence and post-submergence stress in a seaweed. This data will then be used to manipulate relevant genes in land plants, to modify their submergence tolerance via a synthetic biology approach. SUBTOL will thus generate knowledge benefiting both academia and industry. SUBTOL (i) initiates a step-change in the societal value of seaweeds by using them as models to understand adaptive processes largely absent from land plants, (ii) greatly improves understanding of both seaweed physiology and plant stress tolerance, (iii) will lead to novel routes for manipulating flood tolerance in land plant crops for agricultural benefit and (iv) enables new understanding of plant evolution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUBTOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUBTOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

ICEDRAGON (2020)

Modelling of dust formation and chemistry in AGB outflows and disks

Read More  

CODer (2020)

The molecular basis and genetic control of local gene co-expression and its impact in human disease

Read More  

LiverMacRegenCircuit (2020)

Elucidating the role of macrophages in liver regeneration and tissue unit formation

Read More