Opendata, web and dolomites

SUBTOL SIGNED

Understanding seaweed submergence tolerance mechanisms and translating them into land plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SUBTOL project word cloud

Explore the words cloud of the SUBTOL project. It provides you a very rough idea of what is the project "SUBTOL" about.

mechanisms    stresses    terrestrial    tides    naturally    sensitive    strategies    harnessing    benefit    initiates    uniquely    manipulating    green    synthetic    security    agricultural    tolerance    counterpart    subsides    improves    takes    factorial    regulation    ancestor    exposure    crops    regulating    molecular    biology    group    shares    understand    largely    vary    threatened    adaptive    models    lack    industry    genes    genetic    time    submergence    sometimes    plant    absent    climate    oxygen    manipulate    gene    oxidative    flood    global    periodic    data    desiccation    drought    land    food    benefiting    generate    salinity    natural    academia    cycles    physiology    flooding    species    followed    societal    ulva    evolution    equivalent    organisms    productivity    first    stress    multiple    incidences    accompanied    seaweed    seaweeds    paradigm    model    modify    post    arising    routes    plants    waterlogging    completely    catastrophic    subtol   

Project "SUBTOL" data sheet

The following table provides information about the project.

Coordinator
THE UNIVERSITY OF BIRMINGHAM 

Organization address
address: Edgbaston
city: BIRMINGHAM
postcode: B15 2TT
website: www.bham.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-09-05   to  2021-03-26

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE UNIVERSITY OF BIRMINGHAM UK (BIRMINGHAM) coordinator 195˙454.00

Map

 Project objective

Global food security is threatened by climate change, particularly increased incidences of flooding and drought. Flooding has catastrophic impact on agricultural productivity, as most agricultural crops are sensitive to waterlogging and submergence. Flooding is a complex, multi-factorial stress involving lack of oxygen, followed by oxidative stress as the flood subsides and sometimes accompanied by changes in salinity. The molecular strategies land plants use to respond to submergence vary widely between species and are not fully understood due to lack of model organisms naturally adapted to such multiple stresses. SUBTOL takes a completely new approach to improving plant submergence tolerance: harnessing genetic mechanisms from green seaweeds, a group of organisms naturally adapted to both submergence and desiccation, for which there is no equivalent terrestrial counterpart. SUBTOL will use the emerging model green seaweed Ulva to understand the changes in gene regulation that occur during seaweed submergence and exposure. Ulva shares a common ancestor with land plants and is uniquely adapted to natural periodic submergence/exposure cycles arising from tides. SUBTOL sets a new research paradigm and will define for the first time the molecular mechanisms regulating both submergence and post-submergence stress in a seaweed. This data will then be used to manipulate relevant genes in land plants, to modify their submergence tolerance via a synthetic biology approach. SUBTOL will thus generate knowledge benefiting both academia and industry. SUBTOL (i) initiates a step-change in the societal value of seaweeds by using them as models to understand adaptive processes largely absent from land plants, (ii) greatly improves understanding of both seaweed physiology and plant stress tolerance, (iii) will lead to novel routes for manipulating flood tolerance in land plant crops for agricultural benefit and (iv) enables new understanding of plant evolution.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SUBTOL" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SUBTOL" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

Photonic Radar (2019)

Implementation of Long Reach Hybrid Photonic Radar System and convergence over FSO and PON Networks

Read More  

CORRELATION (2020)

Characterization and prediction of service-level traffic for future sliced mobile network

Read More  

RegulatioNFkB (2019)

Deciphering transcriptional regulation of NF-kB target genes using integrative omics approaches

Read More