Opendata, web and dolomites

CHIRON SIGNED

Spin Wave Computing for Ultimately-Scaled Hybrid Low-Power Electronics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CHIRON project word cloud

Explore the words cloud of the CHIRON project. It provides you a very rough idea of what is the project "CHIRON" about.

domains    computer    limit    resonators    envisions    magnetoelectric    law    microelectronics    replace    resonance    computing    spin    lateral    device    bear    acoustic    benchmarked    frontier    science    compact    engineering    simulation    area    chiron    material    proof    efficiency    electronic    alleviating    alongside    throughput    interference    calibrated    performance    signal    reducing    output    circuits    nems    gates    environment    viability    wave    moore    joining    hybrid    fabricate    power    interdisciplinary    models    transducers    full    complemented    bulk    nanoresonators    readily    advantages    gt    nm    shifting    expertise    basic    technologies    optimise    inverters    majority    operation    paradigm    digital    waves    consumption    promise    electromechanical    first    physics    electrical    energy    ghz    complement    circuit    vision    frequency    disruptive    introduction    miniaturisation    nano    computation    technological    cmos    nanoscale    manufacturing    multiferroic    uses    logic    lithography   

Project "CHIRON" data sheet

The following table provides information about the project.

Coordinator
INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM 

Organization address
address: KAPELDREEF 75
city: LEUVEN
postcode: 3001
website: www.imec.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Project website http://www.chiron-h2020.eu
 Total cost 3˙745˙607 €
 EC max contribution 3˙745˙607 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INTERUNIVERSITAIR MICRO-ELECTRONICA CENTRUM BE (LEUVEN) coordinator 675˙726.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 554˙315.00
3    SOLMATES BV NL (ENSCHEDE) participant 512˙875.00
4    UNIVERSITE PARIS-SACLAY FR (SAINT AUBIN) participant 441˙025.00
5    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) participant 413˙323.00
6    TECHNISCHE UNIVERSITAET KAISERSLAUTERN DE (KAISERSLAUTERN) participant 389˙825.00
7    IDRYMA TECHNOLOGIAS KAI EREVNAS EL (IRAKLEIO) participant 283˙750.00
8    THALES SA FR (COURBEVOIE) participant 254˙330.00
9    INSTITUTUL NATIONAL DE CERCETAREDEZVOLTARE PENTRU MICROTEHNOLOGIE RO (VOLUNTARI) participant 220˙437.00
10    UNIVERSITE PARIS-SUD FR (ORSAY CEDEX) participant 0.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

The future miniaturisation of electronic circuits following Moore’s law will require the introduction of increasingly disruptive technologies to limit power consumption and optimise performance per circuit area. CHIRON envisions spin wave computing to complement and eventually replace CMOS in future microelectronics. Spin wave computing is a paradigm-shifting technology that uses the interference of spin waves for computation. Spin wave computing has the potential for significant power and area reduction per computing throughput while reducing cost by alleviating lithography requirements. As a first step towards the vision of a full spin wave computer, CHIRON envisions hybrid spin wave–CMOS circuits that can be readily integrated alongside CMOS. CHIRON targets a proof of principle of the essential elements for spin wave computing by an interdisciplinary approach joining partners with expertise in material science, physics, nano-manufacturing, electrical engineering, device simulation, and circuit design. CHIRON will fabricate basic logic gates, such as inverters and majority gates, demonstrate their operation, and assess their performance. As transducers between the CMOS and spin wave domains in hybrid circuits, CHIRON will develop magnetoelectric and multiferroic nanoresonators, based on nanoscale bulk acoustic resonators, which bear promise for high energy efficiency and large output signal. The targeted lateral scale (100 nm) and resonance frequency (>10 GHz) bring such resonators to the frontier of nano-electromechanical systems (NEMS). This technological proof of principle is complemented by the design of digital hybrid spin wave–CMOS circuits that show the advantages of spin wave computing and can be integrated into a CMOS environment. Based on calibrated compact device models, the performance of these circuits in terms of power, area, and throughput will be benchmarked against CMOS to demonstrate their viability.

 Deliverables

List of deliverables.
Transducer device demonstrator – 1st TN specifications Demonstrators, pilots, prototypes 2020-03-18 19:18:46
Intermediate report on connecting logic gates Documents, reports 2020-03-18 19:18:46
Project website and logo online Websites, patent fillings, videos etc. 2020-03-18 19:18:46
Report on test protocol definition Documents, reports 2020-03-18 19:18:46

Take a look to the deliverables list in detail:  detailed list of CHIRON deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 F. Heussner, G. Talmelli, M. Geilen, B. Heinz, T. Brächer, T. Meyer, F. Ciubotaru, C. Adelmann, K. Yamamoto, A. A. Serga, B. Hillebrands, and P. Pirro
A passive GHz frequency-division multiplexer/demultiplexer based on anisotropic magnon transport in magnetic nanosheets
published pages: , ISSN: , DOI:
2020-03-18
2019 Q. Wang, M. Kewenig, M. Schneider, R. Verba, B. Heinz, M. Geilen, M. Mohseni, B. Lägel, F. Ciubotaru, C. Adelmann, C. Dubs, P. Pirro, T. Brächer, and A. V. Chumak
Realization of a nanoscale magnonic directional coupler for all-magnon circuits
published pages: , ISSN: , DOI:
2020-03-18
2019 F. Vanderveken, M. Heyns, B. Sorée, C. Adelmann, and F. Ciubotaru
Magnetoelectric excitation of spin waves in non-uniformly magnetized waveguides
published pages: , ISSN: , DOI:
2020-03-18
2018 Frank Heussner, Matthias Nabinger, Tobias Fischer, Thomas Brächer, Alexander A. Serga, Burkard Hillebrands, Philipp Pirro
Frequency‐Division Multiplexing in Magnonic Logic Networks Based on Caustic‐Like Spin‐Wave Beams
published pages: 1800409, ISSN: 1862-6254, DOI: 10.1002/pssr.201800409
physica status solidi (RRL) – Rapid Research Letters 12/12 2020-03-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHIRON" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHIRON" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

QUEFORMAL (2019)

Quantum Engineering for Machine Learning

Read More  

SUPERGALAX (2020)

Highly sensitive detection of single microwave photons with coherent quantum network of superconducting qubits for searching galactic axions

Read More  

WiPLASH (2019)

Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures

Read More