Opendata, web and dolomites

SPRINT SIGNED

Ultra-versatile Structural PRINTing of amorphous and tuned crystalline matter on multiple substrates

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SPRINT project word cloud

Explore the words cloud of the SPRINT project. It provides you a very rough idea of what is the project "SPRINT" about.

marketable    electronic    innovation    plethora    capacity    film    restrain    degree    functional    photonics    deposition    plastics    universal    examples    core    nanotechnology    limitations    temperatures    function    vacuum    manner    technologies    combines    strategic    crystallinity    amorphous    room    material    tune    benefits    table    versatile    integration    conceptual    sprint    nano    limited    precise    emitting    appearance    diodes    prominent    biotechnology    overcome    broaden    single    pressure    breaking    kets    requirement    architectures    atmospheric    hampers    interfaces    micro    temperature    roadmaps    photovoltaic    optoelectronic    create    progress    performance    utmost    thin    tuned    generate    radically    significantly    miniaturization    rates    nanoelectronics    unsuitable    3d    ground    materials    inherently    cells    dimensions    absence    crystalline    lower    costly    sensors    paramount    multiple    goes    light    substrates    compatible   

Project "SPRINT" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙999˙997 €
 EC max contribution 2˙999˙997 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 470˙151.00
2    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) participant 435˙375.00
3    CREATIVE NANO PC EL (PERISTERI) participant 400˙012.00
4    CENTER FOR TECHNOLOGY RESEARCH ANDINNOVATION (CETRI) LTD CY (Nicosia) participant 399˙937.00
5    UNIVERSIDADE DO PORTO PT (PORTO) participant 394˙543.00
6    TECHNISCHE UNIVERSITAET GRAZ AT (GRAZ) participant 300˙452.00
7    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) participant 299˙837.00
8    KATHOLIEKE UNIVERSITEIT LEUVEN BE (LEUVEN) participant 299˙687.00

Map

 Project objective

Thin film deposition methods are crucial to generate progress in Key Enabling Technologies (KETs) of strategic importance for Europe, including Advanced Materials, Nanotechnology, Micro- and Nanoelectronics, Biotechnology, and Photonics. Devices like photovoltaic cells, light emitting diodes, electronic and optoelectronic micro-/nano-sensors are prominent examples of thin film applications where the precise control of material deposition and its degree of order (crystallinity) are of paramount importance for their performance and function. However, technologies for thin film deposition have very limited capacity to tune the material crystallinity at room temperature and atmospheric pressure, or to create functional 3D architectures in a single and versatile manner. The requirement of high temperatures and vacuum conditions make them inherently costly and unsuitable for deposition on various substrates (e.g. plastics). Moreover, their dimensions are not compatible with miniaturization and integration in table-top interfaces that would broaden their potential use. These limitations restrain the development of ground-breaking functional materials and new-conceptual devices. The absence of a radically new deposition technology hampers innovation and the appearance of new and cost-effective marketable products. Therefore, it is of utmost importance to develop a radically new deposition technology to overcome these limitations, and that is at the core of the SPRINT project. SPRINT will develop a universal deposition technology of amorphous and tuned crystalline matter on multiple substrates, at room temperature and pressure. This technology not only combines the benefits of existing advanced deposition methods, at significantly lower cost and higher deposition rates, but also goes beyond the state-of-the-art in advanced materials development, to open new roadmaps to a plethora of future devices and applications.

 Deliverables

List of deliverables.
Project website and logo Websites, patent fillings, videos etc. 2020-03-19 15:36:25
Interim plans for results’ dissemination and exploitation Documents, reports 2020-03-19 15:36:25

Take a look to the deliverables list in detail:  detailed list of SPRINT deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 E. Astria, M. Thonhofer, R. Ricco, W. Liang, A. Chemelli, A. Tarzia, K. Alt, C.E. Hagemeyer, J. Rattenberger, H. Schroettner, T. Wrodnigg, H. Amenitsch, D.M. Huang, C.J. Doonan, P. Falcaro
Carbohydrates@MOFs
published pages: , ISSN: 2051-6347, DOI: 10.1039/c8mh01611a
Materials Horizons 2020-03-19
2019 Semih Sevim, Carlos Franco, Hongjun Liu, Hervé Roussel, Laetitia Rapenne, Juan Rubio‐Zuazo, Xiang‐Zhong Chen, Salvador Pané, David Muñoz‐Rojas, Andrew J. deMello, Josep Puigmartí‐Luis
In‐Flow MOF Lithography
published pages: 1800666, ISSN: 2365-709X, DOI: 10.1002/admt.201800666
Advanced Materials Technologies 4/6 2020-03-19
2019 D. Muñoz-Rojas, T. Maindron, A. Esteve, F. Piallat, J.C.S. Kools, J.-M. Decams
Speeding up the unique assets of atomic layer deposition
published pages: 96-120, ISSN: 2468-5194, DOI: 10.1016/j.mtchem.2018.11.013
Materials Today Chemistry 12 2020-03-19
2019 M. de J. Velasquez-Hernandez, R. Riccò, F. Carraro, T. Limpoco, M. de las M. Linares-Moreau, E. Leitner, H. Wiltsche, J. Rattenberger, H. Schroettner, P. Frühwirt, E. M. Stadler, G. Gescheidt, H. Amenitsch, C. J. Doonan and P. Falcaro
Degradation of ZIF-8 in phosphate buffered saline media
published pages: , ISSN: 1466-8033, DOI: 10.1039/c9ce00757a
CrystEngComm 2020-03-19

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPRINT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPRINT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

NARCISO (2019)

NAtuRal instability of semiConductors thIn SOlid films for sensing and photonic applications

Read More  

BRIEFING (2018)

Bridging the FET Innovation Gap

Read More  

QUEFORMAL (2019)

Quantum Engineering for Machine Learning

Read More