Opendata, web and dolomites

COSMOS SIGNED

COSMOS: Computational Shaping and Modeling of Musical Structures

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COSMOS" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙495˙776 €
 EC max contribution 2˙495˙776 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-06-01   to  2024-05-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 2˙495˙776.00
2    QUEEN MARY UNIVERSITY OF LONDON UK (LONDON) participant 0.00

Map

 Project objective

Music performance is considered by many to be one of the most breath taking feats of human intelligence. That music performance is a creative act is no longer a disputed fact, but the very nature of this creative work remains illusive. Taking the view that the creative work of performance is the making and shaping of music structures, and that this creative thinking is a form of problem solving, COSMOS proposes an integrated programme of research to transform our understanding of the human experience of performed music, which is almost all music that we hear, and of the creativity of music performance, which addresses how music is made. The research themes are as follows: i) to find new ways to represent, explore, and talk about performance; ii) to harness volunteer thinking (citizen science) for music performance research by focussing on structures experienced and problem solving; iii) to create sandbox environments to experiment with making performed structures; iv) to create theoretical frameworks to discover the reasoning behind the structures perceived and made; and, v) to foster community engagement by training experts to provide feedback on structure solutions so as to increase public understanding of the creative work in music performance. Analysis of the perceived and designed structures will be based on a novel duality paradigm that turns conventional computational music structure analysis on its head to reverse engineer why a perceiver or a performer chooses a particular structure. Embedded in the approach is the use of computational thinking to optimise representations and theories to ensure accuracy, robustness, efficiency, and scalability. The PI is an established performer and a leading authority in music representation, music information research, and music perception and cognition. The project will have far reaching impact, reconfiguring expert and public views of music performance and time-varying music-like sequences such as cardiac arrhythmia.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COSMOS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COSMOS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

U-HEART (2018)

Unbreakable HEART: a reconfigurable and self-healing isolated dc/dc converter (U-HEART)

Read More  

AllergenDetect (2019)

Comprehensive allergen detection using synthetic DNA libraries

Read More  

RESOURCE Q (2019)

Efficient Conversion of Quantum Information Resources

Read More