Opendata, web and dolomites

HyArchi SIGNED

Targeting Root Hydraulic Architecture to improve Crops under Drought

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "HyArchi" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 2˙498˙100 €
 EC max contribution 2˙498˙100 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-ADG
 Funding Scheme ERC-ADG
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2023-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 2˙498˙100.00

Map

 Project objective

Water is the most limiting environmental factor for agricultural production worldwide and climate change exacerbates this threat. The HyArchi project will address this issue from a plant biology perspective and proposes new strategies to improve crop tolerance to drought. The main objective is to optimize water uptake and transport in cereals affected by drought. HyArchi will target maize, a major crop and a foundational model in plant genetics and water relations that is grown in irrigation or rain-fed conditions. HyArchi will consider three root traits: root system architecture, generated through continuous growth and branching; water transport; and environmental signalling. The first two traits yield the root hydraulic architecture. HyArchi will investigate how this architecture evolves in time and space by integrating local and systemic signals that communicate water availability. HyArchi proposes two innovative molecular discovery approaches recently validated by my group in model plants. Genome-wide association studies will be used to uncover novel genes, with signalling functions acting on root hydraulics. Transcriptomic analyses of an experimental split-root system will be used to identify molecules (e.g. hormones, miRNAs) involved in systemic signalling and governing root growth and hydraulics. These studies will be supported by key methodological developments. A semi-automated set of pressure chambers will be constructed to measure root hydraulics in multiple genotypes under highly controlled local root environments. Improved root image analyses will be coupled to mathematical modelling to represent local and systemic effects of water on root hydraulic architecture. Ultimately, HyArchi will deliver enhanced knowledge on root water transport and its control by a set of new genes, with a description of their natural variation and impact on whole-plant drought responses. Importantly, this will allow introducing beneficial alleles into elite cultivars.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYARCHI" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYARCHI" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

PROGRESS (2019)

The Enemy of the Good: Towards a Theory of Moral Progress

Read More  

DISINTEGRATION (2019)

The Mass Politics of Disintegration

Read More  

Photopharm (2020)

Photopharmacology: From Academia toward the Clinic.

Read More