Opendata, web and dolomites

HyGate SIGNED

Hydrophobic Gating in nanochannels: understanding single channel mechanisms for designing better nanoscale sensors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HyGate project word cloud

Explore the words cloud of the HyGate project. It provides you a very rough idea of what is the project "HyGate" about.

unravel    mechanism    nanopores    sequencing    unexplored    hygate    cell    molecular    theory    vapor    limiting    bio    hydrophobic    confined    nanoscale    inspire    theoretical    inactivation    electrical    confinement    mechanisms    innovative    nanofluidic    selectivity    stepwise    probability    plethora    nanobubbles    exquisite    quantitative    environments    behavior    gate    lower    solid    insights    ions    model    ion    noise    extreme    electric    flux    simulation    applicability    species    fundamental    tools    nanochannels    sensing    gases    channels    external    conformation    strategies    sought    nanopore    dynamics    event    biological    biosensors    suggest    water    physical    pressure    nucleation    compliance    bubbles    opening    synthetic    gating    instrumental    hydrophobicity    influence    circuits    phenomenon    largely    interior    dramatic    dna    designing    rare    molecules    frequency    nanoconfined    closing    radically    hindered    transition    deploy    nanodevices    conspire   

Project "HyGate" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA 

Organization address
address: Piazzale Aldo Moro 5
city: ROMA
postcode: 185
website: www.uniroma1.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙496˙250 €
 EC max contribution 1˙496˙250 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA IT (ROMA) coordinator 1˙496˙250.00

Map

 Project objective

Hydrophobic gating is the phenomenon by which the flux of ions or other molecules through biological ion channels or synthetic nanopores is hindered by the formation of nanoscale bubbles. Recent studies suggest that this is a generic mechanism for the inactivation of a plethora of ion channels, which are all characterized by a strongly hydrophobic interior. The conformation, compliance, and hydrophobicity of the nanochannels – in addition to external parameters such as electric potential, pressure, presence of gases – have a dramatic influence on the probability of opening and closing of the gate. This largely unexplored confined phase transition is known to cause low frequency noise in solid-state nanopores used for DNA sequencing and sensing, limiting their applicability. In biological channels, hydrophobic gating might conspire in determining the high selectivity towards a specific ions or molecules, a characteristic which is sought for in biosensors. The objective of HyGate is to unravel the fundamental mechanisms of hydrophobic gating in model nanopores and biological ion channels and exploit their understanding in order to design biosensors with lower noise and higher selectivity. In order to achieve this ambitious goal, I will deploy the one-of-a-kind simulation and theoretical tools I developed to study vapor nucleation in extreme confinement, which comprises rare-event molecular dynamics and confined nucleation theory. These quantitative tools will be instrumental in designing better biosensors and nanodevices which avoid the formation of nanobubbles or exploit them to achieve exquisite species selectivity. The novel physical insights into the behavior of water in complex nanoconfined environments are expected to inspire radically innovative strategies for nanopore sensing and nanofluidic circuits and to promote a stepwise advancement in the fundamental understanding of hydrophobic gating mechanisms and their influence on bio-electrical cell response.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HYGATE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HYGATE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

DeCoCt (2019)

Knowledge based design of complex synthetic microbial communities for plant protection

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More