Opendata, web and dolomites

MUSIQ SIGNED

Multiphoton Microscopy and Ultrafast Spectroscopy: Imaging meets Quantum

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 MUSIQ project word cloud

Explore the words cloud of the MUSIQ project. It provides you a very rough idea of what is the project "MUSIQ" about.

resolution    temporal    phenomena    team    smallest    forefront    quantitatively    world    interaction    biological    pioneer    15    musiq    biomedical    interactions    fundamental    chain    pharmaceutical    light    quest    microscopy    tomorrow    countries    scientists    companies    image    designed    central    dimensional    ultrafast    intersectoral    network    machinery    21st    spectroscopy    molecules    merged    coherences    biophysical    tools    biomolecular    life    microscopes    technically    unravel    science    generation    academics    stage    brings    optical    techniques    quantitative    measuring    nature    biomolecules    single    molecule    electronic    connected    century    imaging    staining    sensitivity    laser    progress    tech    native    observation    nonlinear    interface    training    recruit    microscope    asked    decipher    demand    toward    skilled    chemistry    innovative    artefacts    coherent    physics    questions    perturbing    quantum    specificity    drive    cells    environment   

Project "MUSIQ" data sheet

The following table provides information about the project.

Coordinator
CARDIFF UNIVERSITY 

Organization address
address: NEWPORT ROAD 30-36
city: CARDIFF
postcode: CF24 ODE
website: www.cardiff.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 4˙034˙446 €
 EC max contribution 4˙034˙446 € (100%)
 Programme 1. H2020-EU.1.3.1. (Fostering new skills by means of excellent initial training of researchers)
 Code Call H2020-MSCA-ITN-2018
 Funding Scheme MSCA-ITN-ETN
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2023-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CARDIFF UNIVERSITY UK (CARDIFF) coordinator 909˙517.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 549˙604.00
3    POLITECNICO DI MILANO IT (MILANO) participant 522˙999.00
4    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES ES (Castelldefels) participant 501˙809.00
5    UNIVERSITAT KONSTANZ DE (KONSTANZ) participant 421˙314.00
6    GLAXOSMITHKLINE RESEARCH AND DEVELOPMENT LTD. UK (BRENTFORD) participant 303˙172.00
7    UNIVERSITA DEGLI STUDI DI MODENA E REGGIO EMILIA IT (MODENA) participant 261˙499.00
8    UNIVERSITE DU LUXEMBOURG LU (ESCH-SUR-ALZETTE) participant 256˙320.00
9    LIGHT CONVERSION, UAB LT (VILNIUS) participant 223˙947.00
10    Leica Microsystems CMS GmbH DE (Wetzlar) participant 84˙262.00
11    ACCELOPMENT AG CH (ZUERICH) partner 0.00
12    APE ANGEWANDTE PHYSIK UND ELEKTRONIK GMBH DE (BERLIN) partner 0.00
13    HERTZ BROERTJES BRIGITTE NL (AMSTELVEEN) partner 0.00
14    SCIENCE MADE SIMPLE LIMITED UK (CARDIFF) partner 0.00
15    Scientific Volume Imaging BV NL (Hilversum) partner 0.00
16    VENTEON Laser Technologies GmbH DE (Hannover) partner 0.00

Map

 Project objective

In the quest to decipher the chain of life from molecules to cells, the biophysical questions being asked increasingly demand techniques that are capable of identifying specific biomolecules in their native environment at the smallest possible scale, and measuring their interactions quantitatively without perturbing the system under observation. Laser-based optical microscopy is a key technology to drive this progress in the 21st century. Still, many challenges remain in particular toward i) achieving imaging with biomolecular specificity without the artefacts from sample staining, ii) quantitative imaging, and iii) single molecule sensitivity. Progress toward biomolecular specificity at very high temporal resolution has been brought by the development of ultrafast two-dimensional electronic spectroscopy, able to address the importance of quantum coherences with the potential to unravel the fundamental machinery of Nature. Yet, measuring quantum phenomena with an optical microscope is technically challenging, and far from real-world biological applications. MUSIQ is designed as an innovative research and training network, where we will recruit 15 Early Stage Researchers to work toward the central ambitious goal of developing the next-generation optical microscopy exploiting quantum coherent nonlinear phenomena. The network brings together a unique team of 7 world-leading academics and 6 high tech companies at the forefront of optical microscopy and ultrafast laser technology developments merged with fundamental understanding of coherent light-matter interaction phenomena, development of quantitative image analysis tools, and biomedical/pharmaceutical real-world applications. MUSIQ will establish an intersectoral training and research programme at the physics/chemistry/life science interface with partners from 9 European countries, aimed at creating the next generation of skilled well-connected scientists that will pioneer the ‘quantum microscopes of tomorrow’.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MUSIQ" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MUSIQ" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.1.)

i-CONN (2019)

Interdisciplinary connectivity: Understanding and managing complex systems using connectivity science

Read More  

MoSaiQC (2020)

Modular Systems for Advanced Integrated Quantum Clocks

Read More  

NanoCarb (2018)

Glyco-Nanoparticles for Applications in Advance Nanomedicine

Read More