Opendata, web and dolomites

pvDesign

A Cutting-Edge Software for the Feasibility Analysis and Design of Photovoltaic Power Plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 pvDesign project word cloud

Explore the words cloud of the pvDesign project. It provides you a very rough idea of what is the project "pvDesign" about.

panels    2015    until    tool    faster    connected    2018    300    400    create    electrical    financial    exceeded    substation    mostly    men    gw    irradiation    version    spending    mm    1h    2010    risk    meteorological    51    inverters    engineers    variables    engineering    yearly    record    precise    fasten    hence    pv    perform    mw    2019    demanding    made    feasibility    service    installed    exceed    global    house    basic    industry    50    developers    purchased    serious    shades    highest    countries    600    elevations    total    saas    recorded    10    76    2020    accurate    software    capacity    plant    cloud    deal    errors    urgently    2021    2016    draftsmen    efficiency    tested    grid    power    utility    500    easier    beta    pvdesign    farm    rate    15    manually    layouts    free    max    2017    automated    hours    fast    sun    700    segment    optimise    year    automate    investment    tools    reduce    march       thorough    normally    excel    cabling    connection    trial    slopes    solar    companies    sheets   

Project "pvDesign" data sheet

The following table provides information about the project.

Coordinator
RATED POWER SL 

Organization address
address: CALLE GENERAL PARDINAS 45 BAJO B
city: MADRID
postcode: 28001
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website https://www.ratedpower.com/
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2018
 Duration (year-month-day) from 2018-05-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    RATED POWER SL ES (MADRID) coordinator 50˙000.00

Map

 Project objective

Year 2016 was a record year for the solar industry. A total of 76.6 GW (mostly in the utility-scale segment) was installed and connected to the grid. That is a 50% yearly growth over the 51.2 GW installed in 2015 and the third highest rate recorded since 2010. In 2016, global solar power capacity exceeded 300 GW. It is expected the total global installed PV capacity to exceed 400 GW in 2018, 500 GW in 2019, 600 GW in 2020 and 700 GW in 2021. Developing a utility-scale PV power plant needs to perform a thorough feasibility analysis and a precise basic engineering study due to the high investment required (c.a. 1 €/w, i.e. 100 MM€ for a 100 MW plant) and hence, the serious financial risk associated with a new solar farm. Many aspects must be taken into account to make an accurate assessment of the new PV plant: sun irradiation, meteorological variables, elevations, slopes, shades, efficiency of panels, layouts, inverters, type of grid connection, electrical substation features, cabling, etc. Until now, solar developers and engineering companies made this work manually spending a great deal of men/hours of engineers and draftsmen, with the help of in-house developed tools (normally based on excel sheets). The ever growing PV utility-scale solar industry is urgently demanding new tools to create much more automated, fast, accurate and reliable feasibility analysis and design studies. The goal is to optimise and fasten the process, reduce the investment risk associated with these large projects and make easier the work to engineers and developers. pvDesign is a software as a service (SaaS) cloud based tool that allows to automate the utility-scale PV power plant feasibility analysis and design process making it much faster (max 1h), accurate and reliable (errors reduction from 10% down to 3.5%). pvDesign free trial Beta version is being tested by more than 30 companies in more than 15 countries. Since March 2017, 5 companies have already purchased pvDesign.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PVDESIGN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PVDESIGN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

Keelcrab (2019)

Keelcrab the Drone for an automated hull cleaning: fast & essential

Read More  

FOTOKITE-SME-P1 (2019)

Aerial Situational Awareness for Every Firefighter

Read More