Opendata, web and dolomites

CELLONGATE SIGNED

Unraveling the molecular network that drives cell growth in plants

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CELLONGATE project word cloud

Explore the words cloud of the CELLONGATE project. It provides you a very rough idea of what is the project "CELLONGATE" about.

though    bodies    effect    unravel    combine    differential    almost    strict    division    organ    elongation    migration    temporal    skeleton    onset    parallel    transcriptome    root    physiology    light    cell    roots    window    manipulation    chip    steering    plants    occurs    immobility    similarly    differ    arabidopsis    plant    regulation    pressurized    gene    nutrient    internal    phytohormone    unknown    correlating    genes    absence    depends    termination    individual    map    organs    exemplified    precise    steer    molecular    orient    balance    consequently    tip    developmental    sculpture    discover    cellular    wall    resolution    thaliana    consists    equipped    cells    hydrostatic    setup    profiles    regulator    encased    movements    chart    vector    optimize    strikingly    gradients    turgor    orientation    protein    migrate    pressure    total    central    auxin    physiological    mechanisms    imaging    types    spatio    lab    elusive    strength    dynamic    live    acquisition    microfluidic    optimized    discovery    size    animals    platform    microscopy    massive    move    gravity    despite    networks    methodology    am    epicenter    mechanism   

Project "CELLONGATE" data sheet

The following table provides information about the project.

Coordinator
UNIVERZITA KARLOVA 

Organization address
address: OVOCNY TRH 560/5
city: PRAHA 1
postcode: 116 36
website: www.cuni.cz

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Czech Republic [CZ]
 Total cost 1˙498˙750 €
 EC max contribution 1˙498˙750 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERZITA KARLOVA CZ (PRAHA 1) coordinator 1˙498˙750.00

Map

 Project objective

Plants differ strikingly from animals by the almost total absence of cell migration in their development. Plants build their bodies using a hydrostatic skeleton that consists of pressurized cells encased by a cell wall. Consequently, plant cells cannot migrate and must sculpture their bodies by orientation of cell division and precise regulation of cell growth. Cell growth depends on the balance between internal cell pressure – turgor, and strength of the cell wall. Cell growth is under a strict developmental control, which is exemplified in the Arabidopsis thaliana root tip, where massive cell elongation occurs in a defined spatio-temporal developmental window. Despite the immobility of their cells, plant organs move to optimize light and nutrient acquisition and to orient their bodies along the gravity vector. These movements depend on differential regulation of cell elongation across the organ, and on response to the phytohormone auxin. Even though the control of cell growth is in the epicenter of plant development, protein networks steering the developmental growth onset, coordination and termination remain elusive. Similarly, although auxin is the central regulator of growth, the molecular mechanism of its effect on root growth is unknown. In this project, I will establish a unique microscopy setup for high spatio-temporal resolution live-cell imaging equipped with a microfluidic lab-on-chip platform optimized for growing roots, to enable analysis and manipulation of root growth physiology. I will use developmental gradients in the root to discover genes that steer cellular growth, by correlating transcriptome profiles of individual cell types with the cell size. In parallel, I will exploit the auxin effect on root to unravel molecular mechanisms that control cell elongation. Finally, I am going to combine the live-cell imaging methodology with the gene discovery approaches to chart a dynamic spatio-temporal physiological map of a growing Arabidopsis root.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CELLONGATE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CELLONGATE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CohoSing (2019)

Cohomology and Singularities

Read More  

CHIPTRANSFORM (2018)

On-chip optical communication with transformation optics

Read More  

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More