Opendata, web and dolomites

BEBOP SIGNED

Bacterial biofilms in porous structures: from biomechanics to control

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BEBOP project word cloud

Explore the words cloud of the BEBOP project. It provides you a very rough idea of what is the project "BEBOP" about.

ranging    theoretical    models    flow    combine    solute    quantities    fantastic    cfd    blending    micro    strain    first    volume    transport    ecology    universal    reaction    basis    biological    blocks    lack    dynamic    biophysical    building    experiments    fundamental    stable    bioreactors    precise    obstacle    connected    surface    yield    media    innovative    single    mechanisms    engineering    bacteria    gain    pore    printed    performance    proof    structures    times    microfluidic    ideas    extract    ratios    individual    network    bacterial    scientific    biofilm    toward    generation    physical    imaging    theory    biomechanics    central    fluid    porous    biotechnologies    principles    motivating    translation    biofilms    conversely    bioreactor    ray    reversible    computing    create    scaffold    3d    microbiology    initial    multiscale    interact    permeability    implications    phenomena    industrial    synthetic    residence    complexity    rates    envision    designs    primary    unlock    heterogeneous    microorganisms    microbial    hypothesis    biology    fluorescence   

Project "BEBOP" data sheet

The following table provides information about the project.

Coordinator
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS 

Organization address
address: RUE MICHEL ANGE 3
city: PARIS
postcode: 75794
website: www.cnrs.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 1˙649˙861 €
 EC max contribution 1˙649˙861 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) coordinator 1˙649˙861.00

Map

 Project objective

The key ideas motivating this project are that: 1) precise control of the properties of porous systems can be obtained by exploiting bacteria and their fantastic abilities; 2) conversely, porous media (large surface to volume ratios, complex structures) could be a major part of bacterial synthetic biology, as a scaffold for growing large quantities of microorganisms in controlled bioreactors.

The main scientific obstacle to precise control of such processes is the lack of understanding of biophysical mechanisms in complex porous structures, even in the case of single-strain biofilms. The central hypothesis of this project is that a better fundamental understanding of biofilm biomechanics and physical ecology will yield a novel theoretical basis for engineering and control.

The first scientific objective is thus to gain insight into how fluid flow, transport phenomena and biofilms interact within connected multiscale heterogeneous structures - a major scientific challenge with wide-ranging implications. To this end, we will combine microfluidic and 3D printed micro-bioreactor experiments; fluorescence and X-ray imaging; high performance computing blending CFD, individual-based models and pore network approaches.

The second scientific objective is to create the primary building blocks toward a control theory of bacteria in porous media and innovative designs of microbial bioreactors. Building upon the previous objective, we first aim to extract from the complexity of biological responses the most universal engineering principles applying to such systems. We will then design a novel porous micro-bioreactor to demonstrate how the permeability and solute residence times can be controlled in a dynamic, reversible and stable way - an initial step toward controlling reaction rates.

We envision that this will unlock a new generation of biotechnologies and novel bioreactor designs enabling translation from proof-of-concept synthetic microbiology to industrial processes.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BEBOP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BEBOP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More