Opendata, web and dolomites

BacterialCORE SIGNED

Widespread Bacterial CORE Complex Executes Intra- and Inter-Kingdom Cytoplasmic Molecular Trade

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BacterialCORE project word cloud

Explore the words cloud of the BacterialCORE project. It provides you a very rough idea of what is the project "BacterialCORE" about.

principles    proteins    inter    nearly    neighboring    versatility    flow    eukaryotic    data    lay    intend    pathogen    bacterial    assembly    metabolites    shared    innovative    module    colonize    physiology    kingdom    species    criteria    niche    diseases    rna    dominant    form    executing    machinery    emsp    cargo    anti    structure    protein    fight    cells    combat    transform    biogenesis    predict    exchange    ubiquitous    transported    larger    devise    identification    pathogenic    molecules    anticipate    crosstalk    life    specificity    conserved    acts    strategies    function    communities    components    interactions    elucidate    human    global    cytoplasmic    membrane    view    proximal    entire    foundation    universal    bacteria    facilitates    molecular    compounds    idea    unbiased    core    modulate    preliminary    poorly    host    earth    describe    enormous    apparatuses    multicellular    identity    organisms    creative    traded    virulence    platform    herein    decipher    mediated    biomass    traffic    reveal    termed   

Project "BacterialCORE" data sheet

The following table provides information about the project.

Coordinator
THE HEBREW UNIVERSITY OF JERUSALEM 

Organization address
address: EDMOND J SAFRA CAMPUS GIVAT RAM
city: JERUSALEM
postcode: 91904
website: www.huji.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 6˙930˙796 €
 EC max contribution 6˙930˙796 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE HEBREW UNIVERSITY OF JERUSALEM IL (JERUSALEM) coordinator 6˙384˙741.00
2    BIRKBECK COLLEGE - UNIVERSITY OF LONDON UK (LONDON) participant 546˙055.00

Map

 Project objective

The enormous versatility of bacteria enables the formation of multi-species communities that colonize nearly every niche on earth, making them the dominant life form and a major component of the biomass. Exchange of molecular information among neighboring bacteria in such communities, as well as between bacteria and proximal eukaryotic cells, is key for bacterial success. Yet, the principles controlling these multicellular interactions are poorly defined. Here we describe the identification of a bacterial protein complex, herein termed CORE, whose function is to traffic cytoplasmic molecules among different bacterial species, and between pathogenic bacteria and their human host cells. The CORE is composed of five membrane proteins, highly conserved across the entire bacterial kingdom, providing a ubiquitous platform that facilitates both intra- and inter-kingdom crosstalk. Our preliminary data support the idea that the CORE acts as a shared module for the assembly of larger apparatuses, executing this universal molecular flow among organisms. We propose to elucidate components, structure and biogenesis of the CORE machinery, operating during bacteria-bacteria and pathogen-host interactions. We further aim to provide an unbiased-global view of the extent and identity of cytoplasmic molecules traded via CORE including metabolites, proteins and RNA, and to reveal the criteria determining the specificity of the transported cargo. Furthermore, we intend to decipher the impact of CORE-mediated molecular exchange on bacterial physiology and virulence, and devise anti-CORE compounds to combat pathogenic bacteria. This study is expected to transform the way we currently view bacterial communities and host-pathogen interactions. We anticipate these findings to lead to the development of creative strategies to modulate, predict and even design bacterial communities, and lay the foundation for new and innovative approaches to fight bacterial diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BACTERIALCORE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BACTERIALCORE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

HEIST (2020)

High-temperature Electrochemical Impedance Spectroscopy Transmission electron microscopy on energy materials

Read More  

IMMUNOTHROMBOSIS (2019)

Cross-talk between platelets and immunity - implications for host homeostasis and defense

Read More