Opendata, web and dolomites

RADDICS SIGNED

Reliable Data-Driven Decision Making in Cyber-Physical Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RADDICS project word cloud

Explore the words cloud of the RADDICS project. It provides you a very rough idea of what is the project "RADDICS" about.

fundamental    policies    first    nonparametric    robustness    decision    overcome    laser    initial    explored    learning    regularity    bayesian    motivated    provably    performance    games    bridging    simulations    unsafe    explicitly    electron    near    unknown    gaussian    erc    strive    computing    assumptions    breakthroughs    imitation    experiments    safe    ideas    dimensional    rarely    powerful    optimal    dangerous    pursue    episodic    reasoning    safely    exploration    platforms    world    extremely    boundary    robotic    simulated    tuning    active    dramatic    abstraction    fidelity    dynamics    efficiency    rl    free    seek    optimizing    environments    photovoltaic    guaranteeing    power    cps    cyber    bootstrapping    data    estimation    optimization    models    powerplants    probability    employing    interdisciplinary    breakthrough    theory    successes    deep    limitations    time    reliability    accurate    specified    visited    proposition    opt    rethink    pursuing    priori    closed    physical    pushes    energy    extensively    tackle    perspective   

Project "RADDICS" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙996˙500 €
 EC max contribution 1˙996˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙996˙500.00

Map

Leaflet | Map data © OpenStreetMap contributors, CC-BY-SA, Imagery © Mapbox

 Project objective

This ERC project pushes the boundary of reliable data-driven decision making in cyber-physical systems (CPS), by bridging reinforcement learning (RL), nonparametric estimation and robust optimization. RL is a powerful abstraction of decision making under uncertainty and has witnessed dramatic recent breakthroughs. Most of these successes have been in games such as Go - well specified, closed environments that - given enough computing power - can be extensively simulated and explored. In real-world CPS, however, accurate simulations are rarely available, and exploration in these applications is a highly dangerous proposition.

We strive to rethink Reinforcement Learning from the perspective of reliability and robustness required by real-world applications. We build on our recent breakthrough result on safe Bayesian optimization (SAFE-OPT): The approach allows - for the first time - to identify provably near-optimal policies in episodic RL tasks, while guaranteeing under some regularity assumptions that with high probability no unsafe states are visited - even if the set of safe parameter values is a priori unknown.

While extremely promising, this result has several fundamental limitations, which we seek to overcome in this ERC project. To this end we will (1) go beyond low-dimensional Gaussian process models and towards much richer deep Bayesian models; (2) go beyond episodic tasks, by explicitly reasoning about the dynamics and employing ideas from robust control theory and (3) tackle bootstrapping of safe initial policies by bridging simulations and real-world experiments via multi-fidelity Bayesian optimization, and by pursuing safe active imitation learning.

Our research is motivated by three real-world CPS applications, which we pursue in interdisciplinary collaboration: Safe exploration of and with robotic platforms; tuning the energy efficiency of photovoltaic powerplants and safely optimizing the performance of a Free Electron Laser.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RADDICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RADDICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

EVOCELFATE (2019)

Evolution of cell fate specification modes in spiral cleavage

Read More  

SmartForests (2020)

Smart Forests: Transforming Environments into Social-Political Technologies

Read More  

SLAMseq (2019)

SLAMseq: Temporal resolution in gene expression profiling across multiple platforms

Read More