Opendata, web and dolomites

RADDICS SIGNED

Reliable Data-Driven Decision Making in Cyber-Physical Systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RADDICS project word cloud

Explore the words cloud of the RADDICS project. It provides you a very rough idea of what is the project "RADDICS" about.

fidelity    powerplants    simulated    extensively    nonparametric    computing    robustness    closed    priori    active    physical    limitations    optimization    visited    deep    bridging    dangerous    gaussian    boundary    bayesian    laser    fundamental    pushes    policies    reasoning    pursuing    interdisciplinary    cyber    rl    optimal    ideas    tackle    environments    initial    efficiency    motivated    electron    provably    strive    employing    safe    erc    data    near    energy    first    dynamics    unknown    imitation    explored    episodic    unsafe    proposition    breakthrough    extremely    powerful    tuning    bootstrapping    regularity    models    experiments    rethink    games    guaranteeing    decision    seek    accurate    photovoltaic    abstraction    robotic    time    dramatic    dimensional    pursue    optimizing    explicitly    platforms    specified    estimation    world    free    opt    perspective    cps    simulations    assumptions    breakthroughs    theory    rarely    exploration    power    probability    learning    safely    successes    overcome    reliability    performance   

Project "RADDICS" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙996˙500 €
 EC max contribution 1˙996˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙996˙500.00

Map

 Project objective

This ERC project pushes the boundary of reliable data-driven decision making in cyber-physical systems (CPS), by bridging reinforcement learning (RL), nonparametric estimation and robust optimization. RL is a powerful abstraction of decision making under uncertainty and has witnessed dramatic recent breakthroughs. Most of these successes have been in games such as Go - well specified, closed environments that - given enough computing power - can be extensively simulated and explored. In real-world CPS, however, accurate simulations are rarely available, and exploration in these applications is a highly dangerous proposition.

We strive to rethink Reinforcement Learning from the perspective of reliability and robustness required by real-world applications. We build on our recent breakthrough result on safe Bayesian optimization (SAFE-OPT): The approach allows - for the first time - to identify provably near-optimal policies in episodic RL tasks, while guaranteeing under some regularity assumptions that with high probability no unsafe states are visited - even if the set of safe parameter values is a priori unknown.

While extremely promising, this result has several fundamental limitations, which we seek to overcome in this ERC project. To this end we will (1) go beyond low-dimensional Gaussian process models and towards much richer deep Bayesian models; (2) go beyond episodic tasks, by explicitly reasoning about the dynamics and employing ideas from robust control theory and (3) tackle bootstrapping of safe initial policies by bridging simulations and real-world experiments via multi-fidelity Bayesian optimization, and by pursuing safe active imitation learning.

Our research is motivated by three real-world CPS applications, which we pursue in interdisciplinary collaboration: Safe exploration of and with robotic platforms; tuning the energy efficiency of photovoltaic powerplants and safely optimizing the performance of a Free Electron Laser.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RADDICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RADDICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More  

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

DeCoCt (2019)

Knowledge based design of complex synthetic microbial communities for plant protection

Read More