Opendata, web and dolomites

QuantumBirds SIGNED

Radical pair-based magnetic sensing in migratory birds

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 QuantumBirds project word cloud

Explore the words cloud of the QuantumBirds project. It provides you a very rough idea of what is the project "QuantumBirds" about.

compass    molecules    pairs    revolutionise    sensing    phenomena    questions    weak    electromagnetic    kbt    works    orientation    dependent    information    stimuli    computing    magnetoreception    rely    exactly    firmly    bio    light    six    birds    something    tissue    receptors    occurring    magnetic    powerful    orders    times    earth    behavioural    experimental    dynamics    proteins    million    anthropogenic    kilometres    completion    molecular    temperature    night    threshold    alone    biochemistry    staggering    avian    synergetic    event    smaller    brings    sense    travelling    inspired    magnificent    guide    cryptochromes    reduce    detection    magnetoreceptor    voyages    health    ground    thereby    prove    encode    senses    songbirds    depends    insights    biology    cryptochrome    quantum    absolutely    thousands    suggests    retinal    least    formed    primary    functioning    boltzmann    multiplied    quantumbirds    constant    prepare    sensory    seems    genuinely    human    magnitude    biophysics    coherent    successful    migratory    spin    retinas    interactions    extraordinary    crucially    neurons    biological    endeavour    indirectly    navigational    detected    radical    chemistry    physics    sensor    imaginative    photochemically   

Project "QuantumBirds" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 8˙561˙588 €
 EC max contribution 8˙561˙588 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-SyG
 Funding Scheme ERC-SyG
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2025-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 4˙225˙563.00
2    CARL VON OSSIETZKY UNIVERSITAET OLDENBURG DE (OLDENBURG) participant 4˙336˙025.00

Map

 Project objective

The navigational and sensory abilities of night-migratory songbirds, travelling alone over thousands of kilometres, are absolutely staggering. The successful completion of these magnificent voyages depends crucially on the birds’ ability to sense the Earth’s magnetic field. Exactly how this magnetic sense works is one of the most significant open questions in biology and biophysics. The experimental evidence suggests something extraordinary. The birds’ magnetic compass sensor seems to rely on coherent quantum phenomena that indirectly allow magnetic interactions a million times smaller than kBT (Boltzmann’s constant multiplied by temperature) to be detected in biological tissue. QuantumBirds brings together quantum physics, spin chemistry, behavioural biology, biochemistry, and molecular biology in a unique, ambitious, imaginative and genuinely synergetic research programme that will prove whether the primary magnetic detection event occurring in the birds’ retinas involves the quantum spin dynamics of photochemically formed radical pairs in cryptochrome proteins.

We will address three specific questions:

1. Are avian cryptochromes capable of functioning as magnetic compass receptors? 2. Do retinal neurons encode light-dependent, cryptochrome-derived magnetic information? 3. Are cryptochromes the primary magnetoreceptor molecules for magnetic compass orientation?

Success in this endeavour will: (a) revolutionise our understanding of magnetoreception, the least understood of all biological senses; (b) firmly establish the emerging field of “Quantum Biology” and thereby reduce by six orders of magnitude the threshold for sensory detection of weak stimuli in biological systems; (c) prepare the ground for the development of a novel and powerful range of bio-inspired magnetic sensing devices; and (d) provide insights that could be applied in quantum computing and guide research into the potential effects of weak anthropogenic electromagnetic fields on human health.

 Publications

year authors and title journal last update
List of publications.
2019 H. G. Hiscock, T. W. Hiscock, D. R. Kattnig, T. Scrivener, A. M. Lewis, D. E. Manolopoulos, P. J. Hore
Navigating at night: fundamental limits on the sensitivity of radical pair magnetoreception under dim light
published pages: , ISSN: 0033-5835, DOI: 10.1017/s0033583519000076
Quarterly Reviews of Biophysics 52 2020-03-11
2019 Thomas C. Player, P. J. Hore
Viability of superoxide-containing radical pairs as magnetoreceptors
published pages: 225101, ISSN: 0021-9606, DOI: 10.1063/1.5129608
The Journal of Chemical Physics 151/22 2020-03-11
2019 Brian D. Zoltowski, Yogarany Chelliah, Anushka Wickramaratne, Lauren Jarocha, Nischal Karki, Wei Xu, Henrik Mouritsen, Peter J. Hore, Ryan E. Hibbs, Carla B. Green, Joseph S. Takahashi
Chemical and structural analysis of a photoactive vertebrate cryptochrome from pigeon
published pages: 19449-19457, ISSN: 0027-8424, DOI: 10.1073/pnas.1907875116
Proceedings of the National Academy of Sciences 116/39 2020-03-11
2020 Thomas P. Fay, Lachlan P. Lindoy, David E. Manolopoulos, P. J. Hore
How quantum is radical pair magnetoreception?
published pages: 77-91, ISSN: 1359-6640, DOI: 10.1039/c9fd00049f
Faraday Discussions 221 2020-03-11
2019 Dmitry Kobylkov, Joe Wynn, Michael Winklhofer, Raisa Chetverikova, Jingjing Xu, Hamish Hiscock, P. J. Hore, Henrik Mouritsen
Electromagnetic 0.1–100 kHz noise does not disrupt orientation in a night-migrating songbird implying a spin coherence lifetime of less than 10 µs
published pages: 20190716, ISSN: 1742-5689, DOI: 10.1098/rsif.2019.0716
Journal of The Royal Society Interface 16/161 2020-03-11

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "QUANTUMBIRDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "QUANTUMBIRDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

NanoPD_P (2020)

High throughput multiplexed trace-analyte screening for diagnostics applications

Read More  

Malaria POC (2019)

Ultrasensitive detection of transmissible malaria

Read More  

TALNET (2020)

Transparent Aluminium Networks

Read More