Opendata, web and dolomites

MSOPGDM SIGNED

Mechanistic studies of prokaryotic genome defense mechanisms

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "MSOPGDM" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT ZURICH 

Organization address
address: RAMISTRASSE 71
city: ZURICH
postcode: 8006
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 191˙149 €
 EC max contribution 191˙149 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT ZURICH CH (ZURICH) coordinator 191˙149.00

Map

 Project objective

The constant biological arms race between prokaryotic organisms and invading mobile genetic elements has resulted in the evolution of sophisticated genome defense mechanisms. The genes encoding for immunity commonly reside in genomic clusters known as defense islands that are in the vicinity of other host-defense loci. Recent studies of defense islands have uncovered ten novel host defense mechanisms whose molecular mechanisms remain elusive at present. The proposed project aims to provide a mechanistic basis for genetic immunity in two novel host defense systems: Druantia and Shedu. These systems contain genes encoding nucleases, ATPases and helicases, which strongly suggests that they provide immunity by directly targeting invading nucleic acids. To unravel the molecular mechanisms that underpin immunity in these systems, I will apply a highly interdisciplinary approach by using biochemical and state-of-the-art structural biology techniques, including high-throughput X-ray crystallography, cryo-EM and crosslink-coupled mass spectrometry. Understanding these mechanisms will provide fundamentally new insights into prokaryotic biology and the evolution of host-virus defense systems. Furthermore, these studies might uncover novel molecular activities that may be exploited for use as genetic engineering tools.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "MSOPGDM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "MSOPGDM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

InBPSOC (2020)

Increases biomass production and soil organic carbon stocks with innovative cropping systems under climate change

Read More  

Extending MEDT (2019)

Extending the Molecular Electron Density Theory

Read More  

SRIMEM (2018)

Super-Resolution Imaging and Mapping of Epigenetic Modifications

Read More