Opendata, web and dolomites

kelbus2 SIGNED

Experimental and numerical study of long runout landslides

Total Cost €


EC-Contrib. €






 kelbus2 project word cloud

Explore the words cloud of the kelbus2 project. It provides you a very rough idea of what is the project "kelbus2" about.

surfaces    rheology    violent    suggests    mechanisms    disks    century    mountainside    craters    1881    completely    simulations    first    hypothesis    fluidization    borrowed    runout    issue    friction    acoustic    falls    simultaneous    perform    difficult    farther    until    flat    scientists    recorded    idealized    wet    highlighting    removed    single    none    interstitial    explanations    2d    relatively    energy    flows    distances    seemingly    height    pressure    ruin    debris    away    mitigation    fell    elm    heim    time    flow    granular    baffled    besides    look    hazard    village    experiments    mechanism    circular    danger    regions    run    gained    safe    origin    mountainous    extremely    mountain    devastated    3d    landslide    shear    falling    fluid    terrain    dissipated    lubrication    albert    extend    motion    satisfactorily    explore    urgency    dry    world    engineering    distance    longitudinal    rock    prediction    laboratory    masses    velocity    argument    balance    crossover    landslides    phenomenon    switzerland    instabilities    material    fundamental    runouts    clustering    melosh    snow    stripes    travel    coworkers   

Project "kelbus2" data sheet

The following table provides information about the project.


Organization address
postcode: 33000

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 196˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-15   to  2022-01-14


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITE DE BORDEAUX FR (BORDEAUX) coordinator 196˙707.00


 Project objective

Landslides, the violent motion of large masses of debris, rock or snow, are an ever-present danger in mountainous regions the world over. After the landslide material falls down the mountainside, it will run out some distance away from the mountain even on relatively flat surfaces until the energy it gained from falling is dissipated by friction with the terrain. Although a simple energy balance argument suggests that a single rock cannot travel farther than the height from which it fell, many landslide runouts extend their ruin to seemingly safe distances far removed from their origin. These long runout landslides have baffled scientists for over a century, ever since Albert Heim recorded his study of the Elm rock landslide that devastated the village of Elm, Switzerland in 1881. There are many explanations for this phenomenon, such as lubrication by an interstitial fluid, but none of these satisfactorily addresses how a completely dry landslide can run out so far. Not understanding how and when long runouts will occur makes hazard mitigation and prediction extremely difficult, highlighting the urgency of this issue. Recently, Melosh and coworkers have provided support for a mechanism borrowed from the fluidization of impact craters, “acoustic fluidization”, by using idealized 2D simulations of circular disks, but more work is needed to show that this mechanism is a feature of real 3D flows and robust for a range of conditions. We will perform laboratory experiments and fully 3D simulations of granular flows using simultaneous pressure and velocity measurements to test the acoustic fluidization hypothesis. We will also look for a crossover between this dry mechanism and the lubrication mechanisms for wet landslides. Besides application to landslide engineering, we will also explore for the first time how fundamental features of granular flows such as shear flow instabilities (clustering and longitudinal stripes) affect the rheology of landslides and long runouts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KELBUS2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "KELBUS2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MIGPSC (2018)

Shaping the European Migration Policy: the role of the security industry

Read More  

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More