Opendata, web and dolomites

FUSEDESIGN SIGNED

Model-guided design of a stabilized pre-fusion class III viral fusogen, rabies virus glycoprotein

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FUSEDESIGN project word cloud

Explore the words cloud of the FUSEDESIGN project. It provides you a very rough idea of what is the project "FUSEDESIGN" about.

training    models    homology    fatal    vaccinology    edge    academic    subunit    computational    mammalian    enveloped    candidates    mutations    data    fusogens    stabilise    model    cells    mouse    health    biochemistry    generation    interventions    cumbersome    glycoproteins    fellowship    stability    centre    herpesvirus    quality    molecular    antibodies    55    form    glycoprotein    people    tractable    class    herpesviruses    position    structurally    immunologically    structure    costly    stabilized    conserved    pathogens    antiviral    host    designed    structures    insights    skill    vaccine    viruses    clinically    stabilize    animals    cutting    guide    interaction    notably    prohibitively    combining    certain    researcher    fusion    unusual    kills    human    billions    transiently    spanning    reported    guided    translational    post    stabilization    mutants    equip    expressed    receptors    combination    antigenically    immunology    contribution    discipline    immunogens    critical    world    structural    neutralizing    trimeric    virus    truly    rabies    exposure    public    vaccines    protein    departments    fusogen    demand    rvg    forms    biology   

Project "FUSEDESIGN" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD 

Organization address
address: WELLINGTON SQUARE UNIVERSITY OFFICES
city: OXFORD
postcode: OX1 2JD
website: www.ox.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 224˙933 €
 EC max contribution 224˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2021-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR, MASTERS AND SCHOLARS OF THE UNIVERSITY OF OXFORD UK (OXFORD) coordinator 224˙933.00

Map

 Project objective

This proposal aims to stabilize the pre-fusion form of rabies virus glycoprotein (RVG), the most structurally-tractable clinically-relevant class III fusogen by combining computational biology, immunology, and structural biology. Rabies virus is fatal; it kills 55,000 people each year and costs billions to control it in animals. Current human rabies vaccines are cumbersome to use and prohibitively costly, thus there is demand for a new generation of rabies vaccines. Enveloped viruses’ fusion glycoproteins are important subunit vaccine candidates. Structure-guided stabilization of class I fusogens has been a major advance in vaccinology. Many major human pathogens have class III fusogens (notably, all herpesviruses and rabies virus): several post-fusion structures have been reported, but their antigenically critical pre-fusion forms have not been stabilized. A high-quality homology model of RVG will guide design of mutations to stabilise the trimeric pre-fusion protein. Designed mutants will be transiently expressed in mammalian cells, selected for stability, and characterized immunologically. Lead candidates will be used as immunogens in mouse models and in structural studies. These data will guide design of improved rabies vaccines, and provide insights into RVG’s interaction with neutralizing antibodies and host receptors. Certain structural elements are conserved across class III fusogens, and so the approach may lead towards stabilization of herpesvirus fusogens. The fellowship will be based between two departments at a world-class host institution. Together, they will offer the Researcher an unusual combination of exposure to both cutting-edge molecular biochemistry and Europe’s leading academic centre for translational vaccine development. This unique training will equip the Researcher with a truly discipline-spanning skill set and position her to make a leading contribution to the development of novel antiviral interventions and public health.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUSEDESIGN" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUSEDESIGN" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MacMeninges (2019)

Control of Central Nervous Sytem inflammation by meningeal macrophages, and its impairment upon aging

Read More  

5G-ACE (2019)

Beyond 5G: 3D Network Modelling for THz-based Ultra-Fast Small Cells

Read More  

IMPRESS (2019)

Integrated Modular Power Conversion for Renewable Energy Systems with Storage

Read More