Opendata, web and dolomites


Chronological REference Datasets and Sites (CREDit) towards improved accuracy and precision in luminescence-based chronologies

Total Cost €


EC-Contrib. €






Project "CREDit" data sheet

The following table provides information about the project.


Organization address
postcode: SY23 3BF

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31


Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 


 Project objective

Numerical chronologies decisively determine the understanding and Numerical chronologies decisively determine the understanding and interpretation of environmental processes in the Earth Sciences and patterns of human evolution in the Archaeological Sciences. Of interest are the onset, duration, and intensity of events and phases. Luminescence dating is an event-based dosimetric age determination technique and one of the leading chronological methods in Quaternary science. However, methodological diversity and complexity, and the absence of community-wide protocol and calibration standards limit overall accuracy and precision. This project will contribute to the accuracy and precision of luminescence-based chronologies by implementing Chronological REference Datasets and Sites (CREDit) in a bottom-up approach. (1) An annually layered sediment core from the Eifel-Laminated-Sediment-Archive (ELSA) will provide a well-dated reference site to test luminescence dating methods and investigate their uncertainty structure. (2) A luminescence reference dataset will be deployed based on measured, and artificially generated data using energy-band models. (3) Both datasets will be used to test (a) luminescence data analysis tools and (b) models depending on accurate chronologies, e.g., age-depth models. The project will deliver a new approach to test luminescence dating methods using an independently high-resolution dated reference site. Additionally, the reference dataset will be designed to allow testing and certifying luminescence data analysis tools. Beyond these goals, the project will give valuable insights into the uncertainty structure of luminescence ages, and it will considerably improve the quality of luminescence-based chronologies. A clear open-access dissemination strategy will support the sustainability of the project in Quaternary science and the exploitation of the results in adjacent scientific disciplines following the Open Science initiative of Horizon 2020.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CREDIT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email ( and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CREDIT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MingleIFT (2020)

Multi-color and single-molecule fluorescence imaging of intraflagellar transport in the phasmid chemosensory cilia of C. Elegans

Read More  

MathematicsAnalogies (2019)

Mathematics Analogies

Read More  

FOCUSIS (2020)

Focal volume Control Using Structured Illumination Sources

Read More