Opendata, web and dolomites

StressOME SIGNED

Defining and modulating the stress granule proteome as a therapeutic strategy in Amyotrophic Lateral Sclerosis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 StressOME project word cloud

Explore the words cloud of the StressOME project. It provides you a very rough idea of what is the project "StressOME" about.

controls    live    causes    assembly    cellular    patient    misexpress    age    lines    thought    neurons    candidate    effect    recognition    als    granule    cure    imaging    genes    cause    sclerosis    first    pathogenesis    protein    misexpressed    die    clear    obvious    concentration    aggregation    prevented    hindered    time    proteome    stressome    sals    how    local    composition    binding    stresses    90    derive    expressing    familial    cell    amyotrophic    cells    10    onset    proteins    stress    biotinylation    recruited    parallel    intracellular    lack    reporter    modulate    transient    recruitment    generate    models    devastating    fals    skin    compare    drosophila    me    constitute    lateral    antibody    tdp    toxicity    form    involvement    sporadic    neurodegenerative    dynamics    almost    matched    microenvironment    inclusions    rna    technique    patients    43    sufficient    inheritance    healthy    disassembly    symptom    structures    disease    granules    aggregate    exhibit   

Project "StressOME" data sheet

The following table provides information about the project.

Coordinator
VIB VZW 

Organization address
address: RIJVISSCHESTRAAT 120
city: ZWIJNAARDE - GENT
postcode: 9052
website: www.vib.be

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Belgium [BE]
 Total cost 166˙320 €
 EC max contribution 166˙320 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    VIB VZW BE (ZWIJNAARDE - GENT) coordinator 166˙320.00

Map

 Project objective

How do you study a disease with no known cause? Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease. Patients typically die 3-5 years after symptom onset. There is no cure. Finding a cure is hindered by the lack of obvious causes: although 10% of patients show familial inheritance (fALS), 90% of patients exhibit a sporadic form of ALS with no known cause (sporadic ALS, sALS). Almost all ALS patients demonstrate intracellular inclusions of the RNA binding protein TDP-43. However, it is not clear what process allows TDP-43 to aggregate, especially in sALS. This will be the focus of the proposed StressOME project. TDP-43, and other ALS-associated proteins are recruited into stress granules, transient structures that form in response to cellular stresses. Stress granules are thought to constitute a microenvironment with a high local concentration of TDP-43, sufficient to allow its aggregation; however this is prevented in healthy neurons. Therefore, the composition of stress granules may be crucial in the pathogenesis of ALS.

To determine whether the dynamics of stress granule assembly and disassembly are different in patient cells, I will derive skin cells from fALS and sALS cases and compare them to age-matched controls. In parallel, I will use a new technique called ‘biotinylation by antibody recognition’ to define the stress granule proteome in sALS and fALS patient cells for the first time. This will allow me to identify candidate genes that modulate stress granule dynamics. I will generate stress granule reporter lines and misexpress candidate proteins, using live cell imaging to determine their effect on the dynamics of stress granules and the recruitment of TDP-43. Candidate genes will also be misexpressed in Drosophila models expressing TDP-43 in order to test their involvement in aggregation and toxicity. Through this approach I will identify novel targets that affect the aggregation of TDP-43 not only in fALS but also sALS.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STRESSOME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "STRESSOME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MultiSeaSpace (2019)

Developing a unified spatial modelling strategy that accounts for interactions between species at different marine trophic levels, and different types of survey data.

Read More  

E-CLIPS (2019)

Effects of Cross-Linguistic Interactions on Perception of Speech

Read More  

INSPiRE (2018)

The Influence of Information Search on Preference Formation and Choice

Read More